Black Tea (Camellia sinensis) Decoction Shows Immunomodulatory Properties on an Experimental Animal Model and in Human Peripheral Mononuclear Cells

Articles

Abstract
Pharmacognosy Research,2012,4,1,15-21.
Published:december,2011
Type:Original Article
Authors:
Author(s) affiliations:

Chandan Chattopadhyay1, Nandini Chakrabarti2, Mitali Chatterjee3, Sonali Mukherjee4, Kajari Sarkar4, A Roy Chaudhuri4

1KPC Medical College and Hospital, 1F, Raja S.C. Mullick Road, Kolkata-700 032, West Bengal, India.

2Department of General Medicine, NRS Medical College and Hospital, 138, AJC Bose Road, Kolkata-700 014, India.

3Department of Pharmacology, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, 244, Acharya Jagadish Chandra Bose Road, Police Station-Bhowanipore, Kolkata-700 020, West Bengal, India.

4Department of Pharmacology, KPC Medical College and Hospital, 1F, Raja S.C. Mullick Road, Kolkata-700 032, West Bengal, India.

Abstract:

Background: Black tea (Camellia sinensis) has been used as a daily beverage for time immemorial. Immunomodulatory effects of tea are recognized as it stimulates the proliferation of cultured human peripheral blood mononuclear cells. Anti-inflammatory effects of tea have also been depicted in the available literature. Therefore, we designed this study to examine the potential immunemodulatory and anti-inflammatory activities of black tea in a rat model and in human peripheral mononuclear cells. Aims: The purpose of the study was to determine (1) evaluation of anti-inflammatory effects of black tea on rats, (2) evaluation of immunemodulator effects of black tea on rats, and (3) evaluation of immunemodulator effects of black tea on human peripheral mononuclear cells. Materials and Methods: Black tea decoction (10% and 20%) was prepared. Acute anti-inflammatory activity of tea decoction was evaluated using carrageenan and dextran whereas chronic anti-inflammatory (Immunomodulatory) effects were evaluated in a complete Freunds' adjuvant-induced arthritis model. Immunostimulatory role was evaluated in cultured human (in vitro) peripheral mononuclear cells (T-lymphocytes) by using methyl thioazolyl tetrazolium (MTT) and Trypan blue assay. Study Design: An experimental study was designed. Results: Black tea decoction (10% and 20%) strength has shown significant anti-inflammatory effects (64.8% and 77% reduction, respectively), on carrageenan-induced acute inflammatory models (rat paw edema) which can be comparable with the standard drug indomethacin (89.1%). In a chronic anti-inflammatory model, black tea decoction (10% and 20%) has shown significant suppressive effects on rat paw edema (38.56% and 69.53%) observed on 21 st day. Lymphoproliferative action of tea was evaluated on human peripheral mononuclear cells using an MTT assay where the number of living cells were expressed in terms of optical density at 570 nm. An experiment has shown that black tea increases the maximum number of T-lymphocytes at 72 h with a maximum strength of 20%. Maximum number of viable cells (T-lymphocytes) was observed with black tea at 20% strength at 72 h. The results were expressed as mean ± SD, and the significance was evaluated by Student's t-test versus control, with P < 0.05 implying significance. Conclusions: Taken together, our data indicate that black tea has potential anti-inflammatory and immunomodulatory action and this corroborates with the current trend of tea being promoted as a 'health drink'.

PDF
Current View
Click here to download the PDF file.
Images

Evaluation of lymphoproliferative action of black tea using MTT assay

Keywords