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INTRODUCTION
Every year more than one million people die from 
vector-borne diseases, of which mosquito-borne 
diseases represent a significant proportion.[1] One of 
the most important vectors that transmit diseases is the 
Aedes aegypti mosquito, which causes the propagation 
of diseases such as zika, dengue, Chikungunya, and 
yellow fever.[2] Given that a single mosquito is the 
primary vector of multiple human diseases, the 
development of new strategies for mosquito control 
is crucial.[3] The most common way to combat the 
mosquito is with insecticides. However, they are toxic 
to humans and the environment.[4] Another concern 
about chemical agents is the increasing resistance 
of the mosquito vector.[5] In this context, natural 
products, especially secondary metabolites, have 
emerged as agents that are generally safer for humans 
and that generate fewer residues in the environment.[6]

In a previous work of our laboratory, we investigated 
the affinity of 248 secondary metabolites of plants from 
the Caatinga Biome as potential ligands of Steroid 
Carrier Protein-2 (SCP-2) from Aedes aegypti. Among 
the highlighted compounds, we identified Fargesin,[7] 
a compound with multiple pharmacological activities, 
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including attenuation of oxidative stress and 
anti-inflammatory activity in monocytic cells,[8] 
increase in basal glucose uptake by translocating 
Insulin-Sensitive Glucose Transporter (GLUT4),[9] 
antihypertensive activity,[10] inhibition of melanin 
synthesis,[11] and antitrypanosomal activity. pere

Fargesin belongs to the class of lignans (also known  
as neolignans). Lignans are found in plants of 
Aristolochia genus popularly known as “mil-homens”  
or “jarrinha”; and in plants of Magnolia genus 
commonly known as “pinha – do – brejo” or 
“baguaçu”.[12-14] This metabolite is derived from the 
oxidative coupling of two phenylpropanoid units and 
propenylphenols (isoeugenol and coniferyl alcohol), 
with regiospecific and diastereospecific control.
[15] Different monomeric precursors generate new 
subgroups of lignans by cyclization or modifications 
in the carbon skeleton, resulting in a wide variety 
of substances.[13] Within these subclasses, Fargesin 
is classified as furanic lignan, characterized by a 
benzodioxol ring, bonded to a linker structure of 
furanoid rings bonded to dimethoxybenzene,[11] 
(Figure 1). 
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Given the already known biological characteristics of Fargesin, as well 
as its potential previously identified by our group, this study aimed to 
perform a virtual screening study using Molecular Docking (MD), applied 
to a set of 1231 molecules designed for the synthesis of Fargesin analogs. 
In these molecular architectures, two privileged structures of the original 
lignan were preserved, the benzodioxol and dimethoxybenzene systems, 
replacing only the intermediate furan ring system by linker structures, 
such as those from the Morita Baylis-Hillman reaction, hydrazones, as 
well as their retroisosteres. Subsequently, the molecules were tested via 
docking against the same Aedes aegypti sterol-2-binding protein aiming 
to identify more promising compounds for future synthesis and bench 
testing.

MATERIALS AND METHODS
Design and Selection of Analogs
Fargesin analogs with designed linkers were searched using PubChem® 
and SciFinder® databanks. The structures were found using a search tool, 
where it was possible to draw the molecule. The proposed compounds 
were designed to keep the privileged structures of Fargesin, with spacer 
structures such as Morita Baylis-Hillman (ester, nitrile), hydrazones, and 
retroisosteres.
The selection criteria were molecules that showed similarity to the 
proposed molecule. A total of 1231 compounds were selected for 
Molecular Docking (MD). Then, the 3D molecules were downloaded 
in SDF file extension and further converted by Open Babel GUI® 
program,[16] to the mol file extension for edition in ChemSketch® program 
(ACD/ChemSketch, version 2012, Advanced Chemistry Development, 
Inc., Toronto, ON, Canada, www.acdlabs.com, 2021); and finally, 
converted directly by Open Babel GUI® software,[16] to pdbqt file.

Macromolecular target (1PZ4)
The macromolecular target for the evaluation of the larvicidal potential 
was the Aedes aegypti sterol-binding protein, which crystallographic 
structure can be found in the Protein Data Bank database, registered 
under PDB code: 1PZ4. This protein was obtained complexed with its 
native ligand, a fatty acid known as palmitic acid. After that, the protein 
was modeled and prepared in Autodock software to add Gastaiger 
charges and polar hydrogens, which are absent in crystallographic 
structures, and saved in a pdbqt file for MD.

Molecular docking
Before MD, redocking (RDK) was conducted with the co–crystallo-
graphic ligand to determine the accuracy of the docking procedure. All 
calculations were performed with the Autodock® Vina module.[17] The 
grid box dimensions chosen were 16x12x18Ǻ, centered on the ligand 
and with the standard spacing of 1Ǻ between the internal grid points. 
The same parameters previously described were applied to the docking 
of the 1231 synthetic analogs of Fargesin. The 3D images and diagrams 
were generated with the free module of the Schrödinger Maestro software 
(Maestro, Schrödinger, LLC, New York, NY, 2021).

RESULTS AND DISCUSSION
After searches in PubChem® and SciFinder®, 1231 Fargesin analogs were 
extracted and tested on the Aedes aegypti sterol-binding protein. Table 1 
shows the compounds that had energy lower than -6.9 Kcal/mol, totaling 
447 favorable compounds. Table 1 also shows the redocking (RDK) 
result. It was found that molecules 188, 350, 351, 773, and 831 had an 
excellent interaction with the protein, achieving binding energy almost 
twice as stable as RDK and with very slight energy variation between 
each other. In other words, binding energies had close values. This study 
aims to discuss the best five molecules. 
Of the compounds that stabilized the protein, with energies from -12 
kcal/mol, three are synthetic isoflavonoids, like molecules 188, named 
(2-methyl-4-oxo-3-phenylchromen-7-yl)-1,3- benzodioxol-5-carboxyl-
ate; 350, named 3-(4-methoxyphenoxyl)-2-methyl-4-oxochromen-7-yl] 
1,3-benzodioxol-5-carboxylate; and 351, named [3-(4-methoxyphenyl)-
4-oxochromen-7-yl] 1,3-benzodioxol-5-carboxylate. All molecules are 
analogous to each other. The structures of these compounds are formed 
by a benzodioxol ring linked by the ester function to the chromone ring, 
linked to the methoxybenzene ring. For molecule 188, only the benzene 
ring has no substituent (Figure 2).
The isoflavonoids contain a methoxyl group at the “para” position of 
the ring B. Compounds 188, 350, and 351 are derived from 7-hydroxy-
4-methoxyflavone, a naturally occurring isoflavonoid known as 
Formononetin, found in legumes.[18] The molecules are obtained 
through the alcoholysis reaction, where Formononetin participates 
as a reagent and thereby forms analogous and biosynthetic molecules. 
Formononentin derivatives are widely studied because they can reverse 
multidrug resistance by inhibiting the efflux pump. Furthermore, also 
have antihypertensive, anti-parasitic,[18] breast and prostate cancer, and 
antioxidant activity.[19]

Figure 3 shows molecules 188, 350, 351 and their interactions. Note 
that in all three molecules, the carboxylate group, which binds the 
benzodioxol group to the chromone ring, interacts with the same amino 
acids as the native ligand in the main chain, which are Valine 26 (Val 
26), Glycine 25 (Gln 25), and Arginine 24 (Arg 24). These interactions 
occur through hydrogen bonds, represented by the pink arrow in the 
2D diagram. Besides the hydrogen bond with these amino acid residues, 
there is another hydrogen bond between Arg 15 and the oxygen of 
benzodioxol.
Molecule 773, named 3-[(E)-3-(1,3-benzodioxol-5-yl)prop-2-enoyl]-
7-[(3-methoxyphenyl)methoxy]chromen-2-one belongs to the class of 
polyoxygenated cinnamoylcoumarins. This class is derived from curcumin,  
which is obtained through the synthetic route with hydroxysalicylal-
dehyde as a reagent.[20] Like other molecules discussed, cinnamoylcou-
marins have biological importance. Resembling curcumin, they possess 
antioxidant properties, as well as cytotoxic and anticancer effects.[20]

Structurally, molecule 773 has a methoxyl at the “ortho” position of ring 
A. It can also be observed that between the benzodioxol ring and the 

Figure 1: Fargesin.
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Table 1: Binding energy of compounds for larvicidal activity in ascending order.

Compounds Binding Energy Compounds Binding Energy Compounds Binding Energy Compounds Binding Energy

188 −12.6 1209 −10 1113 −9.5 25 -9.1

350 −12.6 108 −10 55 −9.4 379 -9.1

351 −12.3 862 −10 100 −9.4 21 -9

773 −12.3 932 −10 576 −9.4 66 -9

831 −12.1 74 −10 836 −9.4 858 -9

1074 −11.9 579 −10 1095 −9.4 1089 -9

346 −11.9 586 −10 1103 −9.4 1102 -9

349 −11.6 1225 −10 102 −9.4 464 -9

347 −11.6 200 −10 105 −9.4 1138 -9

494 −11.5 631 −10 225 −9.4 1159 -9

343 −11.5 308 −9.9 1116 −9.4 71 -9

495 −11.5 1112 −9.9 1171 −9.4 465 -9

348 −11.4 209 −9.9 337 −9.4 502 -9

492 −11.4 973 −9.9 972 −9.4 868 -9

493 −11.4 967 −9.9 135 −9.4 848 -9

826 −11.4 298 −9.8 210 −9.4 1087 -8.9

827 −11.2 1134 −9.8 333 −9.4 259 -8.9

876 −11.2 104 −9.8 977 −9.4 267 -8.9

341 −11.1 1158 −9.8 1155 −9.3 854 -8.9

884 −11.1 578 −9.8 1184 −9.3 1090 -8.9

345 −11 761 −9.8 487 −9.3 340 -8.9

218 −10.9 901 −9.8 1083 −9.3 256 -8.9

1114 −10.8 1172 −9.8 1108 −9.3 352 -8.9

1210 −10.7 70 −9.8 1161 −9.3 463 -8.9

344 −10.7 299 −9.8 136 −9.3 54 -8.9

49 −10.7 602 −9.7 270 −9.3 941 -8.9

69 −10.6 1198 −9.7 863 −9.3 58 -8.8

226 −10.6 4 −9.7 364 −9.3 197 -8.8

886 −10.6 331 −9.7 875 −9.3 593 -8.8

60 −10.6 353 −9.7 1104 −9.3 22 -8.8

292 −10.5 101 −9.7 1186 −9.3 186 -8.8

885 −10.5 1107 −9.7 568 −9.3 1091 -8.8

839 −10.5 1132 −9.7 570 −9.3 1196 -8.8

913 −10.5 466 −9.7 823 −9.3 470 -8.8

971 −10.5 542 −9.7 1109 −9.2 1094 -8.8

758 −10.5 604 −9.7 1174 −9.2 1111 -8.8

802 −10.5 207 −9.6 296 −9.2 1131 -8.8

1224 −10.5 1115 −9.6 594 −9.2 205 -8.8

1092 −10.4 65 −9.6 824 −9.2 61 -8.8

1147 −10.4 222 −9.6 187 −9.2 380 -8.8

805 −10.4 307 −9.6 467 −9.2 1099 -8.8

227 −10.4 1117 −9.6 1148 −9.2 835 -8.8

220 −10.3 1178 −9.6 1223 −9.2 1170 -8.7

910 −10.3 1017 −9.6 960 −9.2 193 -8.7

837 −10.3 680 −9.6 80 −9.1 272 -8.7

216 −10.2 297 −9.6 120 −9.1 497 -8.7

continued...
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Table 1: Binding energy of compounds for larvicidal activity in ascending order.

Compounds Binding Energy Compounds Binding Energy Compounds Binding Energy Compounds Binding Energy

342 −10.2 249 −9.6 756 −9.1 591 -8.7

630 −10.2 489 −9.6 909 −9.1 1088 -8.7

911 −10.2 23 −9.5 1097 −9.1 1133 -8.7

905 −10.2 223 −9.5 1110 −9.1 1140 -8.7

801 −10.1 262 −9.5 1143 −9.1 1151 -8.7

48 −10.1 853 −9.5 861 −9.1 119 -8.7

613 −10.1 933 −9.5 969 −9.1 334 -8.7

1197 −10.1 1192 −9.5 945 −9.1 469 -8.7

587 −10.1 263 −9.5 45 −9.1 1093 -8.7

621 −10.1 850 −9.5 596 −9.1 1229 -8.7

759 −10.1 68 −9.5 757 −9.1 675 -8.7

198 −10 566 −9.5 951 −9.1 772 -8.7

946 −10 683 −9.5 24 −9.1 255 -8.7

301 −8.7 503 −8.2 1105 −7.8 1010 -7.4

940 −8.7 1176 −8.2 673 −7.8 797 -7.4

770 −8.7 931 −8.2 845 −7.8 1185 -7.4

460 −8.6 950 −8.2 1080 −7.8 27 -7.3

605 −8.6 1213 −8.2 1218 −7.8 63 -7.3

1018 −8.6 851 −8.2 72 −7.8 1165 -7.3

1100 −8.6 295 −8.2 461 −7.8 874 -7.3

1157 −8.6 871 −8.2 974 −7.8 483 -7.3

1211 −8.6 1205 −8.2 33 −7.8 26 -7.3

219 −8.6 62 −8.2 484 −7.8 90 -7.3

475 −8.6 224 −8.2 903 −7.8 804 -7.3

926 −8.6 112 −8.1 269 −7.7 206 -7.2

253 −8.6 251 −8.1 1230 −7.7 355 -7.2

288 −8.6 284 −8.1 592 −7.7 1141 -7.2

332 −8.6 760 −8.1 796 −7.7 1189 -7.2

366 −8.6 829 −8.1 1154 −7.7 73 -7.2

462 −8.6 968 −8.1 28 −7.7 324 -7.2

509 −8.6 975 −8.1 211 −7.7 603 -7.2

679 −8.6 1187 −8.1 300 −7.7 91 -7.2

995 −8.6 1188 −8.1 869 −7.7 252 -7.2

1177 −8.6 1220 −8.1 359 −7.7 258 -7.1

89 −8.6 319 −8.1 970 −7.7 552 -7.1

476 −8.5 922 −8.1 928 −7.6 734 -7.1

477 −8.5 1217 −8.1 31 −7.6 1208 -7.1

486 −8.5 38 −8.1 283 −7.6 32 -7.1

852 −8.5 1164 −8.1 287 −7.6 1144 -7

1145 −8.5 870 −8.1 488 −7.6 325 -7

1181 −8.5 185 −8 677 −7.6 1160 -7

257 −8.5 678 −8 887 −7.6 474 -7

481 −8.5 116 −8 260 −7.6 1135 -7

367 −8.5 681 −8 261 −7.6 271 -7

457 −8.5 763 −8 930 −7.6 762 -7

828 −8.5 766 −8 1012 −7.6 285 -7

continued...



Lima, et al.: Fargesin Analogs with Larvicidal Potential in Aedes aegypti

16� Pharmacognosy Research, Vol 14, Issue 1, Jan-Mar, 2022

Table 1: Binding energy of compounds for larvicidal activity in ascending order.

Compounds Binding Energy Compounds Binding Energy Compounds Binding Energy Compounds Binding Energy

840 −8.5 956 −8 378 −7.6 739 -7

976 −8.5 291 −8 1146 −7.6 RDK -6.9

111 −8.4 774 −8 40 −7.6

328 −8.4 1204 −8 67 −7.6

29 −8.4 290 −8 268 −7.6

468 −8.4 597 −8 771 −7.6

819 −8.4 855 −8 866 −7.6

920 −8.4 316 −7.9 1190 −7.6

264 −8.4 814 −7.9 1126 −7.5

265 −8.4 856 −7.9 228 −7.5

480 −8.4 999 −7.9 479 −7.5

201 −8.4 1096 −7.9 872 −7.5

310 −8.4 929 −7.9 959 −7.5

441 −8.4 1153 −7.9 1162 −7.5

849 −8.3 86 −7.9 952 −7.5

1098 −8.3 590 −7.9 1231 −7.5

322 −8.3 64 −7.9 36 −7.5

1180 −8.3 302 −7.9 966 −7.5

674 −8.3 599 −7.9 670 −7.5

82 −8.3 859 −7.9 245 −7.4

458 −8.3 1169 −7.9 182 −7.4

944 −8.3 1221 −7.9 273 −7.4

459 −8.3 908 −7.9 309 −7.4

1101 −8.2 834 −7.8 701 −7.4

846 −8.2 294 −7.8 765 −7.4

1106 −8.2 755 −7.8 842 −7.4

Binding energies are represented in kcal/mol. RDK: reocking.

Figure 2: Compounds 188 (A), 350 (B) and 351 (C) in 2D and complexed with 
1PZ4.

Figure 3: Molecules 188 (A), 350 (B) e 351 (C) interacting with amino acid 
residues in the protein. In green pi-cation-type bond, in yellow hydrogen 
bond, in cyan aromatic.
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CONCLUSION
In this paper, we evidenciated natural product analogs with potencial 
against Aedes aegypti mosquitoes. Among the most stable compounds 
evaluated by dockings, the results emphasizes the isoflavonoid class as 
the best potential to interruption of the mosquito’s life cicle. The synthetic 
obtention of these analogs has a simpler methodology and the reagents 
used are economically accessible, making them promising candidates for 
Sterol Carrier Protein-2 inhibition. Therefore, this work encourages the 
experimental evaluation of formononetin and analogs.
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