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ABSTRACT
Background: Physalis angulata L. is widely used in folk medicine. Secondary 
metabolites with pharmacological potential, including physalins that 
exhibit anti‑inflammatory/immunomodulatory and antiparasitic activities, 
have been identified in this specie. To date, few studies have investigated 
storage sites for secondary metabolites in P. angulata. Objective: The 
objective of the study is to characterize the anatomical structures and 
determine the phytochemical composition of the vegetative organs of 
P. angulata. Materials and Methods: Electron and conventional optical 
microscopy was used for the anatomical characterization of P angulata 
organs  (leaves, roots, stems, and fruits). Methanolic extracts from 
leaves, roots, stems, and fruits were chemically characterized for the 
presence of steroids, terpenoids, tannins, alkaloids, saponins, flavonoids, 
anthraquinones, coumarins, and phenolic compounds. Phenolic 
compounds, flavonoid contents, and antioxidant capacity of these 
extracts were determined by 2,2‑diphenyl‑1‑picrylhydrazyl‑free radical 
scavenging activity. Results: Abaxial leaf stomata were more abundant 
than the adaxial stomata. Trichomes were more abundant along veins 
in the petioles and stems, beyond the margin in the sepals and petals, 
and dispersed in the ovary. Steroids and terpenoids were present in 
leaves, stems, and fruits of P. angulata. Saponins were exclusive to fruits. 
Phytochemical screening did not detect flavonoids, anthraquinones, 
and alkaloids in all tested plant parts. The highest antioxidant capacities 
were identified in leaf and fruit extracts, possibly due to the presence of 
phenolic compounds in these organs. Conclusion: This study describes 
anatomical and biochemical features from P  angulata that will assist 
in future phytochemistry and pharmacological studies, particularly 
pointing toward organs abundant in antioxidants  (leaves and fruits) and 
steroids (possibly physalins; leaves).
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SUMMARY
•  This work describes the anatomy and chemical composition of Physalis 

angulata organs and serves as a springboard for future phytochemical studies 
on physalins, assisting a range of fields including plant breeding and phar‑
macognosy.

Abbreviations Used: DPPH: 2,2‑diphenyl‑1‑ picrylhydrazyl, HTLV‑1: Human 
T‑lymphotropic virus type 1, TPC: Total phenolic 
content, TFC: Total flavonoid content, 
SEM: Scanning electron microscopy, BHA: 
Buthylated hydroxyanisole.
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INTRODUCTION
Physalis angulata L., a member of the Solanaceae family, is an annual 
herbaceous species distributed in tropical and subtropical areas 
worldwide. In Brazil, P. angulata is found in all regions and is widely used 
in popular medicine to treat chronic rheumatism, kidney, bladder, liver, 
and skin diseases, as well as for its sedative, antipyretic, and antiemetic 
properties.[1]

The wide range of biological activities presented by the genus Physalis 
is possibly due to the vast metabolic and structural diversity of 
compounds present in these plants. Several secondary metabolites 
with pharmacological properties have been identified in the genus 
Physalis, such as alkaloids, flavonoids, glycosides, saponins, tannins, 
terpenoids, physalins, and withanolides, especially a series of C28 

steroidal lactones.[2,3] Studies with secosteroids purified from extracts of 
P. angulata (physalins B, F, or G) or extracts prepared from roots showed 
potent anti‑inflammatory/immunomodulatory[4] and antineoplastic[5,6] 
activities. Particularly, physalin F has been identified as a substance with 
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specimen was deposited in the Herbarium of UEFS (Voucher number: 
110448).

Anatomical analysis
Tissues from three P. angulata individuals were fixed in 
FAA70  (formaldehyde, acetic acid, and ethanol) and stored in 70% 
alcohol. The leaves (apex, base, and central portion), petioles, stems, and 
roots were embedded in methacrylate  (Historesin; Leica Biosystems, 
Nussloch, Germany) in accordance with manufacturer’s instructions 
and then sectioned on a rotary microtome using disposable steel razors. 
Sections were stained with 0.05% toluidine blue to detect cellulose 
and lignin in cross‑sections and slides mounted with Entellan (Merck, 
Darmstadt, Germany). The description of anatomical structure was done 
according to Metcalf and Chalk.[13] The measurement of stomatal density 
was performed using the ANATI QUANTI software (Federal University 
of Viçosa, Viçosa, Minas Gerais, Brazil).[14] The paradermal sections were 
obtained by dissociation and stained with safranin to give contrast in the 
paradermal cut. The material was photographed on a QImaging Go‑3 
camera coupled to the Olympus BX 41 optical photomicroscope.

Crystal tests
Histochemical acid solubility was employed to characterize the anionic 
saline nature of the crystals, by subjecting the crystals of the test material 
to acetic acid A. R. (Analytical grade reagent)  and hydrochloric acid 
10% (v/v) aqueous in roots, stems, and leaves of P. angulata. The calcium 
oxalate crystals were insoluble in acetic acid and soluble in hydrochloric 
acid, without producing effervescence.

Phytochemical tests
Roots, stems, leaves, and fruits were separated, dried to a constant 
weight in a 36 ± 2°C oven (Fanem, Mod. 320‑SE), and then ground in a 
Wiley mill (Tecnal, TE 650). Powdered samples (30 g) were extracted by 
maceration with 300 ml of methanol for 72 h at room temperature (30°C). 
The extracts were filtered  (using Whatman no. 1 filter paper) and 
concentrated under reduced pressure using a rotate evaporator (IKA 
RV 10 digital) at 40  ±  2°C. The yields of the methanol extracts were 
between 3.1% and 9.6% by dry weight. All dry crude extracts obtained 
were stored at 8ºC in airtight containers until analysis. A stock solution 
of crude extract  (3.0  mg/mL) was dissolved in 10  mL of methanol 
for phytochemical screening. Qualitative screening for secondary 
metabolites such as flavonoids, coumarins, tannins, saponosides, steroids 
and terpenoids, anthraquinones, and alkaloids was carried out according 
to Trease and Evans, 1983, and Harborne, 1998.[15,16]

Antioxidant activity
The antioxidant activity (AC) of extracts was determined using the in vitro 
2,2‑diphenyl‑1‑picrylhydrazyl (DPPH) scavenging radical method.[17] In 
short, serial dilutions of the extracts of parts of P. angulata were prepared 
in methanol (0.625, 1.25, 2.5, and 5.0 mg/mL), and 50 μl of the samples 
was added to 200 μl DPPH (0.2 mM) in methanol in 96‑well microtiter 
plates. Quercetin was used as a reference/standard compound. DPPH 
solution and methanol served as blank. Absorbance was determined 
at 517  nm using a microtiter plate reader  (Bio‑Rad Elx  800), and the 
percentage of DPPH radical scavenging activity (% RSA) was calculated 
according to the following equation:
%RSA  =  100 ×  ([absorbance of control‑absorbance of sample]/
absorbance of control).

Determination of total phenolic content
The determination of the phenolic compounds was performed with 
the Folin–Ciocalteu method using gallic acid as standard.[18] Briefly, 

pharmacological potential, presenting an immunosuppressive effect 
on the proliferation of human T‑lymphotropic virus type  1‑infected 
cells[7] and Trypanosoma cruzi,[8] as well as antileishmanial[9] and 
antiplasmodial[10] activities.
Few studies have characterized the anatomical structure of P. angulata 
and the tissular distribution of secondary metabolites in the species. 
Glandular trichomes located in the epidermis of plants are important 
sites of synthesis, secretion, and/or storage of compounds such as 
terpenoids, alkaloids, and tannins.[11,12]

To determine the secondary metabolites with pharmacological properties 
in P. angulata, comprehensive anatomical description and phytochemical 
characterizations of the vegetative organs were conducted. This work 
sheds light on functional aspects of the secretory structures and might 
contribute to improve the bioprospecting process and consequently the 
plant’s pharmacological potential.

MATERIALS AND METHODS
Plant materials
Adult P. angulata individuals [Figure 1a‑c] were collected in summer 
(November, 2017) at the Horto Florestal Experimental Unit of the 
Universidade Estadual de Feira de Santana  (UEFS), Bahia, Brazil. 
Specimens were harvested at physiological maturity. A  voucher 

Figure 1: Structure of Physalis angulata L. (A) Plant parts, a: General aspect 
of the branch; b: Primary and secondary roots; c: Corolla in front view; d: 
Reproductive structures: Stamens and pistil (ovary and stigma); e: Fruit 
wrapped in the fruitful cup; f: Fruit; g: Seed. (B) Flower, (C) Fruit. P. angulata 
growing in an experimental field at the Horto Florestal Experimental Unit 
of the Universidade Estadual de Feira de Santana, Bahia, Brazil
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20 μL of each extract (300 mg L in methanol) was mixed with 100 μL 
of the Folin–Ciocalteu reagent in a microplate and shaken for 4 min 
followed by the addition of 75 μl of sodium carbonate (100 g/L). After 
a 2‑h incubation in the dark at room temperature, the absorbance 
was measured at 750  nm on the Bio‑Rad Elx  800 microplate reader. 
The reaction blank was prepared with distilled H2O. All assays were 
performed in triplicate.

Determination of total flavonoid content
Total flavonoid content  (TFC) was measured using a modified 
spectrophotometric method, as proposed by Chatatikun and 
Chiabchalard.[19] Briefly, 50 μL of extracts (1000 mg/L) or quercetin 
was added to 10 μL of a 10% aluminum chloride solution followed by 
the addition of 150 μL of 95% ethanol. The blank was prepared with 
80% ethanol. About 10 μL of 1 M sodium acetate was added to the 
mixture in a 96‑well microplate and incubated for 40  min at room 
temperature protected from light. The absorbance was measured 
at 415  nm on a Bio‑Rad Elx  800 microplate reader. The TFC was 
calculated using a quercetin standard curve. The results were 
expressed as mg quercetin equivalent gram of extract. All samples 
were analyzed in triplicate.

Scanning electron microscopy analysis
Fragments of the vegetative and reproductive parts of P. angulata 
were fixed with 2.0% glutaraldehyde (Electron Microscopy Sciences, 
Hatfield, PA, USA) in sodium cacodylate buffer  (0.1 M, pH  7.2) 
for 1  h at room temperature. After fixation, samples were washed 
three times with sodium cacodylate buffer  (0.1 M, pH  7.2). Cells 
were then postfixed with a solution of osmium tetroxide for 30 min 
and dehydrated in increasing concentrations of ethanol (30%, 50%, 
70%, 90%, and 100%). The samples were dried until the critical 
point, method with CO2, mounted on aluminum stubs, metallized 
with gold, and analyzed in a JEOL JSM‑6390 LV scanning electron 
microscope.

Statistical analyses
A linear regression was used for calculating IC50 values. Results 
were considered statistically significant when P  <  0.05. All analyses 
were performed using Analyse‑it software regression method 
(Leeds, United Kingdom).

RESULTS
Leaf anatomy
Stomata
The leaf epidermal surfaces of P. angulata exhibit uniseriate cells with 
sinuous walls. The species is amphistomatic (stomata on both surfaces) 
with anisocytic‑type stomata (surrounded by three subsidiary cells) in the 
epidermis presenting striated cuticle [Figure 2a]. Higher concentration of 
stomata was observed in the abaxial face (370.1 ± 152.8 mm2) compared 
to the adaxial surface (269.2 ± 167.2 mm2).

Trichomes
A comprehensive analysis of types and quantities of trichomes in the 
different plant tissues was conducted. Multicellular tectorial and glandular 
capitate trichomes with single‑celled stalks were more abundant along 
veins in the petioles  [Figure  2b and c] and stems  [Figure  2d and e], 
beyond the margin in the sepals [Figure 2f] and petals [Figure 2g] and 
dispersed in the ovary  [Figure  2h]. Scattered tectorial  [Figure  2i] and 
glandular  [Figure  2j] trichomes were observed in adaxial and abaxial 
surfaces of the leaf blade.

Mesophyll
The mesophyll structure is characterized by a dorsiventral 
organization  (palisade and spongy parenchyma), comprising one layer of 
palisade parenchyma and three layers of spongy parenchyma [Figure 3a and b]. 
The vascular bundles were bicollateral, i.e., the xylem is found between layers 
of phloem [Figure 3c]. Numerous crystals of calcium oxalate, druses, were 
found in the mesophyll (palisade and spongy parenchyma) [Figure 3d].

Stem anatomy
The collenchyma was angular with two layers of cells, the cortex 
presents three layers of cells, the stem was hollow  [Figure  4a], and 
numerous crystals of prismatic calcium oxalate were observed in the 
parenchyma [Figure 4b].

Root anatomy
The cortex exhibits about 3–4 layers of cells, and the medulla was 
filled with parenchyma cells  [Figure  4c]. Numerous crystalline 
sands and crystals of prismatic calcium oxalate were observed in the 
cortex [Figure 4d‑f].

Figure  2: Transmission electron microscopy images of the epidermis of Physalis angulata L. Stomata in leaf  (a). Tectorial trichomes in petiole  (b). 
Trichomes aggregated on the mid-veins of petioles (c) and in stems (d). Detail of tectorial and capitate glandular trichomes (e); Distribution of trichomes 
on sepal (f ), petal (g), and ovary (h). Detail of tectorial (i) and glandular (j) trichomes in leaf blade. STO: Stomata; TT: Tectorial trichome; GT: Glandular 
trichome
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Phytochemical composition
The phytochemical screening of leaf, stem, root, and fruit of P. angulata 
revealed the presence of steroids, terpenoids, and tannins mainly in the 
leaf. Saponins were found only in the fruits. Flavonoids, anthraquinones, 
and alkaloids were absent in all parts of the plant [Table 1].
The maximum amount of total phenolic content (TPC) was observed in 
the root (30.63 mg GAE/g) and the lowest in the fruit (26.28 mg GAE/g) 
extracts [Table 2]. The equation for the gallic acid standard calibration 
curve was y  =  0.0051x  +0.0802  (R² = 0.9988). The content of TPC 
followed the pattern: Root > stem > leaf > fruit.

The leaf extract yielded the highest amounts of TFC  (32.41  mg QE/g 
extract), whereas none was detected in roots and fruits  [Table  2]. 
The equation for the quercetin standard calibration curve was 
y = 0.0056x + 0.0473 (R² = 0.9982).
The highest AC was found in leaf and fruit extracts of P. angulata [Table 3].

DISCUSSION
To date, only a few anatomical studies have been reported on P. angulata 
and these are exclusively based on optical microscopy.[20‑22] In this work, 
a comprehensive anatomical description of P. angulata was performed 
using scanning electron microscopy analysis. In agreement with 
previous reports on P. angulata, stomata were found in both faces of the 
leaf epidermis, with a higher number in the abaxial face.[22,23] The stomata 
was anisocytic and protrusive, diverging from other reports that found 
sporadically anomocytic stomata.[20]

Glandular trichomes are crucial in the production of chemicals. In this 
study, glandular capitate and tectorial trichomes were observed on the 
mid‑veins of petioles and the stems. This pattern of distribution is present 
in the Solanaceae Withania somnifera and has been associated with the 
protection of the underlying vasculature[24] and to an improved access to 
nutrients and chemicals originated from the vascular bundles. Within 
Solanaceae, alkaloids and phenolic compounds are synthesized in the 
roots and transported to the leaves. Glandular trichomes are therefore 
located on mid‑veins for easy sequestration of these compounds.[24]

The parenchyma of leaf, stem, and root was similar to that previously 
described for P. angulata.[20] Regarding the vascular structures, bicollateral 
bundles were found in leaves and stems, as reported previously for 
Solanaceae.[25] However, the stem was hollow in all evaluated parts (apex, 
middle, and base), which contradicts a previous report of solid stem.[21]

Several oxalate crystals in the form of druses were found in the 
parenchyma of leaves and in the cortex of P. angulata stems, while 
crystals with a prismatic shape were present mainly in the root cortex. 
The formation of crystals is a physiological process that regulates the 

Figure 3: Anatomical details of the leaf of Physalis angulata L. Transmission 
electron microscopy images of palisade and spongy parenchyma 
with xylem and phloem  (a); detail of parenchyma  (b) and central 
vein  (c).   Optical microscopy of druses in mesophyll  (d). EP: Epidermis; 
MES: Mesophyll; PP: Palisade parenchyma; SP: Spongy parenchyma; X: 
Xylem; Ph: Phloem; DR: Druse
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Figure 4: Anatomical details of Physalis angulata L. Transmission electron microscopy image of collenchyma, cortex  (spongy parenchyma), conducting 
vessels  (xylem and phloem), and hollow stems  (a). Prismatic crystals in the stem parenchyma  (b). Transmission electron microscopy image of root  (c). 
Prismatic crystals (d and e) and crystal sands (f ) in root. EP: Epidermis; CT: Cortex; Ph: Phloem; X: Xylem; SP: Spongy parenchyma; PC: Prismatic crystals; 
CS: Crystal sands, PE: Periderm
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calcium dynamics in plants and has an additional role in the protection 
against herbivores and in the detoxification of several heavy metals.[26] 
Prismatic crystals have been reported in the leaves of other species of 
Solanaceae, such as tomato and tobacco.[27]

The chemical composition of plant extracts found among species of 
Solanaceae varies both in quality and in quantity.[28] Determining the 
phytochemical tissue, composition of a species improves compound 
isolation procedures and bioprospection. The presence of secondary 
metabolites in parts of P. angulata was determined. Steroids, terpenoids, 
and tannins were present mainly in leaves of P. angulata [Table 1].
These results corroborate phytochemical studies that revealed 
withanolides (steroids) and chemotaxonomic markers in Solanaceae.[29] 
The withanolides are the main secondary metabolites in Physalis spp. 
with almost 60 types synthesized, especially physalins, ixocarpalactones, 
and acnistins.[28,30] The biological proprieties of withanolides include 
action against tumor cells,[5,6,31] parasites such as T. cruzi[8] and 
Leishmania,[9] and in addition to antimicrobial,[32] immunomodulatory/
anti‑inflammatory activities.[4,33] Other common steroids such as 
β‑sitosterol, stigmasterol, campesterol, and methylene‑cholesterol can 
also be found in Physalis spp.[34]

The alkaloids are abundant in Solanaceae, particularly tropane, steroidal, 
indole, pyrrolidine, and imidazole variants.[29] The isolation and 
identification of alkaloids in Physalis can be challenging. The isolation 
and identification of the alkaloids such as N‑trans‑feruloyltyramine, 
N‑p‑coumaroyltyramine, and phygrine have been reported in at least one 
species of the genus (P. alkekengi var. franchetii).[4,28,35] In the present study, 
however, alkaloids were not detected in any investigated parts [Table 1]. 
This suggests that the concentrations of alkaloids in P. angulata might be 
very low and thus not detectable by the method employed or, alternatively, 
that these plants do not synthesize this class of chemicals.
The present study identified terpenoids in leaves of P. angulata. 
Terpenoids are essential for plant survival. These compounds have 

been associated with antimicrobial, antifungal, antiparasitic, antiviral, 
antihyperglycemic, antihypoglycemic, anti‑inflammatory, and 
immunomodulatory properties.[36] Except for carotenoids, terpenoids 
are rare in P. angulata; in contrast, two studies have isolated labdane 
diterpenoids from Physalis coztomatl and Pitcairnia sordida.[37,38]

The presence of terpenoids in trichomes has been well documented in 
Solanaceae[39‑41] as well as other plant families including Lamiaceae[42] 
and Asteraceae.[43] Other species such as Petunia hybrida accumulate 
functional (insecticidal) steroidal compounds in trichomes.[44] Therefore, 
it is possible that glandular trichomes in P. angulata harbor the site 
for the synthesis of terpenoid‑derived physalins.[20] This study found 
that trichomes in P. angulata are in lower numbers as compared with 
other species of Physalis  (Physalis peruviana and Physalis pubescens) 
or other Solanaceae.[20,21] Genetic engineering would be alternative to 
increase trichome density on P. angulata[40,45] and consequently physalin 
production. This approach has been successfully used in transgenic 
canola.[45,46] This highlights the importance of anatomical studies coupled 
to phytochemical characterization in the plant with therapeutic potential.
Phenolic compounds (including flavonoids) may react with free radicals 
in the cell, conferring antioxidant properties that have the potential to 
inhibit pathological and degenerative processes, such as cancer. The 
amount of total phenolic and flavonoid compounds, as well as the 
antioxidant capacity found in the present study, was slightly lower than 
those reported previously [Table 4].
A comparison of the absolute values among these studies is limited 
due to methodological differences in compound quantification, extract 
production, as well as types of plant parts studied. Previously, P. angulata 
extracts were shown to have relevant AC, presenting an antitumor effect 
on human oral cancer cells[50] and on intestinal inflammation in a rat 
model.[51] A mechanism for the possible inhibition of carcinogenesis 
by phenolic compounds remains unclear; however, the antioxidant 
properties might play an important role blocking the molecular events 
involved in all stages of cancer development.[52] In this study, the highest 
antioxidant capacity was identified in extracts obtained from leaves and 
fruits of P. angulata. The antioxidant capacity is positively associated 
with the amount of phenolic, flavonoid, and aromatic compounds 
present in a given extract. Interestingly, flavonoids were not detected 
in fruits and roots, and this is consistent with findings from Medina–
Medrano et al.[47] which were also unable to detect flavonoids in fruits 
of P. angulata  [Table 4]. Thus, other compounds might be responsible 
for the antioxidant capacity observed in these extracts. The extracts that 
presented the greatest antioxidant activities were precisely those that 
show greater phenolic content. Phenolic contents or antioxidant capacity 
in species of Physalis has been mainly focused on fruits. For example, 
goldenberry (fruit of P. peruviana) is one of the most promising tropical 
fruits for its medicinal and edible uses.[47‑49,53]

CONCLUSION
In summary, the anatomical analysis of P. angulata presents new and 
relevant information regarding the distribution of tectorial and glandular 
trichomes in the petioles, stems, sepals, and petals. These structures might 
be the site of production and accumulation of physalins, potentially the 
most useful compound in this plant. P. angulata antioxidant properties 

Table 1: Phytochemical constituents of methanolic extracts from different parts of Physalis angulata

Part Steroids Terpenoids Tannins Alkaloids Saponins Flavonoids Anthraquinones Coumarins
Leaves +++ +++ ++ − − − − −
Stems + + − − − − − +
Roots − − − − − − − ++
Fruits + − − − ++ − − −

−: Negative; +: Mild positive; ++: Positive; +++: Highly positive

Table 2: Total phenolic and flavonoid content present in Physalis angulata

Part TPC (mg GAE/g extract) TFC (mg QE/g extract)
Leaves 27.39±0.08 32.41±0.015
Stems 30.24±0.056 9.91±0.003
Roots 30.63±0.058 Nd
Fruits 26.28±0.055 Nd

Values were expressed as mean±SD. (n=5). Nd: Not determined; GAE: 
Equivalent of gallic acid; QE: Quercetin equivalent; SD: Standard deviation; 
TPC: Total phenolic content; TFC: Total flavonoid content

Table 3: Half maximal inhibitory concentration values of 
2,2-diphenyl-1-picrylhydrazyl-free radical scavenging activity of extracts of 
Physalis angulata

Part DPPH (IC50 mg/mL)
Leaves 7.24±0.012
Stems 38.05±0.022
Roots 15.25±0.04
Fruits 8.34±0.014

Values were expressed as mean±SD. (n=5). DPPH: 2,2‑diphenyl‑1‑picrylhydrazyl; 
IC50: Half maximal inhibitory concentration; SD: Standard deviation
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confirm the therapeutic potential of this plant. The current findings may 
support future breeding programs and biotechnological approaches for 
the optimization of useful compound production from P. angulata.
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