Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 12  |  Issue : 4  |  Page : 337-341

In vitro 3-Hydroxy-3-methylglutaryl-coenzyme: A reductase inhibition assay of triphala ayurvedic formulation


Pharmaceutical Chemistry and Natural Products Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand

Correspondence Address:
Dr. Prasob-Orn Rinthong
Pharmaceutical Chemistry and Natural Products Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150
Thailand
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_68_20

Rights and Permissions

Background: Triphala, the Ayurvedic herbal formulation composed of Terminalia chebula Retz. (Combretaceae), Terminalia bellirica Roxb. (Combretaceae), and Phyllanthus emblica L. (Euphorbiaceae) fruits. It has been reported the cholesterol-lowering effect that the reduction of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was proposed as a key mechanism of action. Since, triphala formulations in equal proportion (1:1:1) and different ratios of its three fruit constituents (vata, pitta, and kapha) have been prescribed by the traditional practitioners due to the patient's body conditions. The biological activities of each formulation are needed to evaluate. Objectives: The objective of the study was to investigate phytochemicals, HMG-CoA reductase inhibitory effect, and HMG-CoA reductase molecular modeling of triphala extracts. Materials and Methods: Four triphala extracts were prepared by decoction and determined the contents of gallic acid, ellagic acid, chebulagic acid, and chebulinic acid as markers using high-pressure liquid chromatography analysis. The in vitro HMG CoA reductase assay was performed based on ultraviolet spectrophotometry, and molecular modeling was simulated using Autodock 1.5.6 to characterize the binding energy, ligand efficacy, and H-bond interaction. Results: All extracts contained gallic acid and chebulagic acid in the high contents, whereas ellagic acid and chebulinic acid were found in a small amount. The enzyme assay revealed pitta extract (at 10 μg/mL) was the most potent enzyme inhibition of 58.4' ± 0.40' (P = 0.05). Moreover, the modeling results indicated that these four markers can interact the enzyme with different configurations and binding affinities. Conclusion: Pitta extract appeared to be a potent HMG-CoA reductase inhibitor. It was a potential natural product as an alternative treatment for hypercholesterolemia.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1255    
    Printed36    
    Emailed0    
    PDF Downloaded227    
    Comments [Add]    

Recommend this journal