Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2010  |  Volume : 2  |  Issue : 1  |  Page : 45-49

Broad-spectrum sun-protective action of Porphyra-334 derived from Porphyra vietnamensis

1 Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
2 Department of Botany, Pune University, Pune, India
3 Maharishi Dayanand University, Rohtak, Haryana, India

Correspondence Address:
Saurabh Bhatia
Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune - 411 038, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0974-8490.60578

Rights and Permissions

There are enormous UV-protective compounds present in the current world market, out of which 98% give protection against UV-B range and the remaining 2% are potent against far UV-A range only. Furthermore, these synthetic compounds have various problems related to photo-stability and cross-stability. There is a vital need of sunscreen agents that will remain stable for prolonged periods and provide broad-spectrum protection against harmful UV range. The Indian Ocean contains large amounts of macro-algae which synthesize varied amount of mycosporine amino acids, "sun-protective compounds" by shikmic acid pathway. In the present study, we have evaluated the sunscreen protection provided by Porphyra-334, a mycosporine amino acid isolated from Indian sp. of Porphyra. Furthermore, the isolated compound was detected by high performance thin layer chromatography (HPTLC) fingerprinting, high performance liquid chromatography (HPLC) and ultraviolet (UV), whereas nuclear magnetic resonance (NMR) spectroscopy and infrared spectrometry were used for its structural characterization. Stability studies were performed under different storage and pH conditions. Ultimately a sunscreen formulation was developed and its potential against marketed Aloe vera gel was evaluated by in vitro sunscreen protection method. It was observed that sunscreen potential of Porphyra-334 was 5.11-fold greater than that of the marketed Aloe vera gel preparation.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded226    
    Comments [Add]    
    Cited by others 11    

Recommend this journal