Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2009  |  Volume : 1  |  Issue : 3  |  Page : 157-161

In-vivo Antitussive Activity of Cressa cretica Linn. using Cough Model in Rodents

1 Government Pharmacy Institute, Govt. of Jharkhand, Bariatu, Ranchi 834 009, India
2 Division of Pharmacognosy, Birla Institute of Technology (BIT), Mesra, Ranchi - 835 215, India
3 Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi - 835 215, India

Correspondence Address:
P Sunita
Government Pharmacy Institute, Govt. of Jharkhand, Bariatu, Ranchi 834 009
Login to access the Email id

Source of Support: None, Conflict of Interest: None

Rights and PermissionsRights and Permissions

Cressa cretica Linn. Voigt. (Convolulaceae), has also been extensively used to get relief from asthma and cough by the indigenous people of India. In the present study the antitussive effect of the plant was evaluated in two different experimental models. The antitussive effect of aerosols of two different concentrations (2.5%w/v, 5%w/v)of methanolic extract of Cressa cretica Linn. (CME), codeine(0.03g/ml), and normal saline were tested by counting the numbers of coughs produced due to aerosols of citric acid 10 min after exposing the male guinea pigs to aerosols of different solutions (n=6). In another set of experiment CME was investigated for its therapeutic efficacy on a cough model induced by sulfur dioxide gas in mice. The results showed significant reduction of cough number obtained in the presence of both concentrations of CME and codeine. The antitussive effect on guinea pigs of higher concentration of CME was significantly (p<0.01) greater than those of lower concentration and the prototype antitussive agent codeine phosphate (p<0.01). It exhibited significant anti tussive activity as that of codeine phosphate, when compared with control in a dose dependent manner in sulfur dioxide gas induced cough model. The extract at 100, 200 and 400 mg/kg, p.o. showed inhibition of cough by 22.1, 34.35 and 55.44 % within 90 min of performing the experiment.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded90    
    Comments [Add]    

Recommend this journal