Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Reader Login
Pharmacognosy Magazine
Search Article 
Advanced search 
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Access statistics : Table of Contents
   2016| January-March  | Volume 8 | Issue 1  
    Online since December 7, 2015

  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Quantitative and Qualitative analysis of Phenolic and Flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L.
Sangeeta Sankhalkar, Vrunda Vernekar
January-March 2016, 8(1):16-21
DOI:10.4103/0974-8490.171095  PMID:26941531
Background: Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. Objective: To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Materials and Methods: Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Results: Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. Conclusions: In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance.
  8,086 202 3
Effect of Beta vulgaris Linn. leaves extract on anxiety- and depressive-like behavior and oxidative stress in mice after acute restraint stress
Kunjbihari Sulakhiya, Vikas Kumar Patel, Rahul Saxena, Jagrati Dashore, Amit Kumar Srivastava, Manoj Rathore
January-March 2016, 8(1):1-7
DOI:10.4103/0974-8490.171100  PMID:26941529
Background: Stress plays a significant role in the pathogenesis of neuropsychiatric disorders such as anxiety and depression. Beta vulgaris is commonly known as "beet root" possessing antioxidant, anticancer, hepatoprotective, nephroprotective, wound healing, and anti-inflammatory properties. Objective: To study the protective effect of Beta vulgaris Linn. ethanolic extract (BVEE) of leaves against acute restraint stress (ARS)-induced anxiety- and depressive-like behavior and oxidative stress in mice. Materials and Methods: Mice (n = 6) were pretreated with BVEE (100 and 200 mg/kg, p. o.) for 7 days and subjected to ARS for 6 h to induce behavioral and biochemical changes. Anxiety- and depressive-like behavior were measured by using different behavioral paradigms such as open field test (OFT), elevated plus maze (EPM), forced swim test (FST), and tail suspension test (TST) 40 min postARS. Brain homogenate was used to analyze oxidative stress parameters, that is, malondialdehyde (MDA) and reduced glutathione (GSH) level. Results: BVEE pretreatment significantly (P < 0.05) reversed the ARS-induced reduction in EPM parameters, that is, percentage entries and time spent in open arms and in OFT parameters, that is, line crossings, and rearings in mice. ARS-induced increase in the immobility time in FST and TST was attenuated significantly (P < 0.05) by BVEE pretreatment at both the dosage. An increase in MDA and depletion of GSH level postARS was prevented significantly (P < 0.05) with BVEE pretreatment at both the dosage (100 and 200 mg/kg). Conclusion: BVEE exhibits anxiolytic and antidepressant activity in stressed mice along with good antioxidant property suggesting its therapeutic potential in the treatment of stress-related psychiatric disorders.
  3,767 54 2
Development, Characterization, and Evaluation of Hepatoprotective effect of Abutilon indicum and Piper longum Phytosomes
Sonam Sharma, Alakh Niranjan Sahu
January-March 2016, 8(1):29-36
DOI:10.4103/0974-8490.171102  PMID:26941533
Background: Evidences from ethnopharmacological practices have shown that combination of Abutilon indicum and Piper longum are traditionally used to treat symptoms of the liver disorder. The hypothesis is phytosomes of a combination of both crude drug extract will be more effective and safe as hepatoprotective agent. Aim: Present work is aimed at development and characterization of phytosomes containing ethanolic extract of both drugs to meet the need for better effectiveness and safety. Materials and Methods: Phytosomes were formulated by using Indena's patented process. Characterization involved following parameters: Particle size determination, percentage yield, entrapment efficiency, differential scanning calorimetry, scanning electron microscope, fourier transform infrared spectroscopy, and high performance thin liquid chromatography. Liver damage was induced in adult Charles foster rats (150 ± 10 g) with CCl 4 in olive oil (1:1 v/v, i.p) 1 ml/kg once daily for 7 days. LIV 52 (1 ml/kg per oral [p.o]), ethanolic extract of A. indicum and P. longum combination (100, 200, and 400 mg/kg p.o) and phytosomes (100 mg/kg p.o.) was given 3 days prior to CCl 4 administration. Estimation of liver marker enzymes and histopathological studies were done. Result was analyzed by using (analysis of variance) followed by Student-Newman-Keuls test. Result: Combined extract has shown hepatoprotective activity but phytosomal formulation has more potent hepatoprotective effect on CCl 4 induced liver toxicity at very low dose comparative to a higher dose of combined extract. Conclusion: Novel approach for herbal drug delivery is more prominent than conventional which improves bioavailability of polar extract and also patient compliance.
  3,638 60 -
In vitro and In vivo Antioxidant evaluation and estimation of total phenolic, flavonoidal content of Mimosa pudica L
Ganesh Patro, Subrat Kumar Bhattamisra, Bijay Kumar Mohanty, Himanshu Bhusan Sahoo
January-March 2016, 8(1):22-28
DOI:10.4103/0974-8490.171099  PMID:26941532
Objective: Mimosa pudica Linn. (Mimosaceae) is traditionally used as a folk medicine to treat various ailments including convulsions, alopecia, diarrhea, dysentery, insomnia, tumor, wound healing, snake bite, etc., Here, the study was aimed to evaluate the antioxidant potential of M. pudica leaves extract against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (in vitro) and its modulatory effect on rat brain enzymes. Materials and Methods: Total phenolic, flavonoid contents, and in vitro antioxidant potential against DPPH radical were evaluated from various extracts of M. pudica leaves. In addition, ethyl acetate extract of Mimosa pudica leaves (EAMP) in doses of 100, 200, and 400 mg/kg/day were administered orally for 7 consecutive days to albino rats and evaluated for the oxidative stress markers as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) from rat brain homogenate. Results: The ethyl acetate extract showed the highest total phenolic content and total flavonoid content among other extracts of M. pudica leaves. The percentage inhibition and IC 50 value of all the extracts were followed dose-dependency and found significant (P < 0.01) as compared to standard (ascorbic acid). The oxidative stress markers as SOD, CAT, and GSH were increased significantly (P < 0.01) at 200 and 400 mg/kg of EAMP treated animals and decreased significantly the TBARS level at 400 mg/kg of EAMP as compared to control group. Conclusion: These results revealed that the ethyl acetate extract of M. pudica exhibits both in vitro antioxidant activity against DPPH and in vivo antioxidant activity by modulating brain enzymes in the rat. This could be further correlated with its potential to neuroprotective activity due to the presence of flavonoids and phenolic contents in the extract.
  3,392 58 3
Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line
Norliyana Amran, Anis Najwa Abdul Rani, Roziahanim Mahmud, Khoo Boon Yin
January-March 2016, 8(1):66-70
DOI:10.4103/0974-8490.171104  PMID:26941539
Background: The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. Objective: This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Materials and Methods: Total antioxidant activities of extracts were assayed using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC), and total phenolic content (TPC) were determined using aluminum chloride colorimetric method and Folin-Ciocalteu's reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Results: B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC 50 ] 15.26 ± 1.25 μg/mL) and ί-carotene bleaching assay (I% 98.13 ± 1.83%). B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g) and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g) compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively). In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC 50 57.61 ± 2.24 μg/mL) compared to H. sabdariffa. Conclusion: The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use.
  3,290 64 1
Quantification of quercetin and rutin from Benincasa hispida seeds and Carissa congesta roots by high-performance thin layer chromatography and high-performance liquid chromatography
Gaurav Mahesh Doshi, Hemant Devidas Une
January-March 2016, 8(1):37-42
DOI:10.4103/0974-8490.171098  PMID:26941534
Objective: In Indian Ayurvedic system, Benincasa hispida (BH) and Carissa congesta (CC) are well-known plants used for major and minor ailments. BH has been regarded as Kushmanda, whereas CC has been used in immune-related disorders of the human system. Quercetin and rutin identified from the vast plethora of plant extracts have proved to possess ethnopharmacological relevance. Materials and Methods: In present studies, we have determined quercetin and rutin in terms of percentage in BH seeds and CC roots by high-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). After extraction and phytochemical screening, the extracts were subjected to quantification for the presence of quercetin and rutin by HPTLC and HPLC. Results: HPTLC showed quercetin as 44.60, 27.13% and rutin as 32.00, 36.31% w/w, whereas HPLC revealed quercetin as 34.00, 35.00% and rutin as 21.99, 45.03% w/v in BH and CC extracts, respectively. Conclusion: The BH and CC extracts have elucidated peaks that were corresponding with standard peaks on undertaking chromatographic studies.
  3,275 77 2
Antioxidant and Immunomodulatory activity of Hydroalcoholic extract and its fractions of leaves of Ficus benghalensis Linn.
Anil Subhash Bhanwase, Kallanagouda Ramappa Alagawadi
January-March 2016, 8(1):50-55
DOI:10.4103/0974-8490.171107  PMID:26941536
Background: Ficus benghalensis is a folk medicine indigenous plant of India. Several studies on this plant reported and focused on the biological profile of the plant. Objectives: This study is aimed to evaluate the antioxidant and immunomodulatory activity of F. benghalensis leaf extract using various in vitro screening methods of both parameters. Materials and Methods: Hydroalcoholic (FB1) extract and it's four fractions viz. n-hexane (FB2), n-butanol (FB3), chloroform (FB4), and water (FB5) of leaves of F. benghalensis investigated for their free radical scavenging activity using 1-1-diphneyl-2-picrylhydrazyl and 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radicals. A dose-response curve was plotted and IC 50 values were determined to assess antioxidant activity. Nitroblue tetrazolium test, phagocytosis of killed Candida albicans and candidacidal assay were carried out to assess the immunomodulatory activity. Positive non-lymphoid cell number, mean particle number of killed C. albicans, percent value of killed C. albicans by neutrophils were calculated and presented. Results: All extracts showed antioxidant and prominent immunomodulatory activity with compared to standard. Conclusions: Hydroalcoholic (FB1) extract and its four fractions viz. n-hexane (FB2), n-butanol (FB3), chloroform (FB4), and water (FB5) showed promising antioxidant and immunomodulatory activity.
  3,104 80 -
Methanolic Extract of Curcuma caesia Roxb. prevents the toxicity caused by Cyclophosphamide to bone marrow cells, liver and kidney of mice
Heisanam Pushparani Devi, Pranab Behari Mazumder
January-March 2016, 8(1):43-49
DOI:10.4103/0974-8490.171106  PMID:26941535
Introduction: With an ever increasing cause of cancer, it has been recommended to treat with conventional drugs, however because of the side effects caused by the conventional drugs, the research on medicinal plants has been intensified due to their less adverse and toxic effects. Objectives: The primary objective of the present study was to evaluate the protective effect of the medicinal plant Curcuma caesia Roxb. against free radicals ABTS + and O2 - . Also it was aimed to evaluate the protective effect of C.caesia Roxb. against the chemotherapeutic drug Cyclophosphamide and its side effects in liver and kidney. Methods: The rhizomes of the plant was extracted with methanol through soxhlet and its antioxidant activity was tested against ABTS + and O2 - . For antigenotoxic studies, animals were divided into eight groups and micronucleus assay was employed and for biochemical analysis serum sample was collected from the blood and SGOT, SGPT analysis was performed. Also the biochemical analysis was performed from both the liver and kidney. Results: The methanolic extract of Curcuma caesia Roxb. was found to scavenge the free radicals ABTS + and O2 - . the micronuclei formation was found to be increased in the positive control group as compared to the negative control group significantly (P<0.002) however increase in the number of micronuclei was found to be decrease with the pretreatment of the extract at different concentrations significantly as compared to the negative control groups (P<0.01, P<0.005,P<0.001). The increased level of serum SGPT and SGOT as well as peroxidation level in both liver and kidney due to treatment of cyclophosphamide was also found to be decreased with the pretreatment of the extract significantly as compared to the positive control groups. There was decreased in the level of endogenous antioxidant such as GSH and GR in the positive control group however decreased level of GSH and GR was found to be increased with the pretreatment of the methanolic extract of C. caesia Roxb. Conclusion: The present study suggested that the methanolic extract of C. caesia Roxb has not shown any genotoxicity and reduces the genotoxicity caused by cyclophosphamide. It was also to have the protective effects against the liver and kidney. So it could be provided as one of the herbal supplementation in chemoprevention of CP to ameliorate the side effects of it.
  3,099 66 3
Crude extracts of marine-derived and soil fungi of the genus Neosartorya exhibit selective anticancer activity by inducing cell death in colon, breast and skin cancer cell lines
Alice Abreu Ramos, Bruno Castro-Carvalho, Maria Prata-Sena, Tida Dethoup, Suradet Buttachon, Anake Kijjoa, Eduardo Rocha
January-March 2016, 8(1):8-15
DOI:10.4103/0974-8490.171105  PMID:26941530
Background: The crude ethyl acetate extracts of marine-derived fungi Neosartorya tsunodae KUFC 9213 (E1) and N. laciniosa KUFC 7896 (E2), and soil fungus N. fischeri KUFC 6344 (E3) were evaluated for their in vitro anticancer activities on a panel of seven human cancer cell lines. Materials and Methods: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, after 48 h treatments with different concentrations of extracts, to determine their concentration of the extract or Dox that inhibits cell viability by 50% for each cell line. The effects of the crude extracts on DNA damage, clonogenic potential and their ability to induce cell death were also assessed. Results: E1 was found to the void of anti-proliferative effects. E2 was shown to decrease the clonogenic potential in human colorectal carcinoma cell line (HCT116), human malignant melanoma cell line (A375), human breast adenocarcinoma cell line (MCF7), and human caucasian colon adenocarcinoma Grade II cell line (HT29) cells, whereas E3 showed such effect only in HCT116 and MCF7 cells. Both extracts were found to increase DNA damage in some cell lines. E2 was found to induce cell death in HT29, HCT116, MCF7, and A375 cells while extract E3 increased cell death in MCF7 and HCT116 cell lines. Conclusion: The results reveal that E2 and E3 possess anticancer activities in human colon carcinoma, breast adenocarcinoma, and melanoma cells, validating the interest for an identification of molecular targets involved in the anticancer activity.
  3,103 60 1
Anti-Lipoxygenase activity of leaf gall extracts of Terminalia chebula (Gaertn.) Retz. (Combretaceae)
Ravi Shankara Birur Eshwarappa, Yarappa Lakshmikantha Ramachandra, Sundara Rajan Subaramaihha, Sujan Ganapathy Pasura Subbaiah, Richard Surendranath Austin, Bhadrapura Lakkappa Dhananjaya
January-March 2016, 8(1):78-82
DOI:10.4103/0974-8490.171103  PMID:26941541
Lipoxygenase (LOX) inhibitors are the promising therapeutic target for treating a wide spectrum of inflammatory-related diseases such as cancer, asthma, lymphoma, leukemia, and autoimmune disorders. In the present study, the photochemical constituents and the anti-LOX potential of leaf galls of Terminalia chebula are evaluated to exemplify its further potential development as medicine. Extracts of T. chebula galls were tested for anti-LOX activity using linoleic acid as substrate and lipoxidase as an enzyme and also the total content of polyphenols with phytochemical analysis of the extract were determined. The presence of highest total phenolic and flavonoid content of 141 ± 2.2 mg of gallic acid equivalent/g d.w and 125 ± 1.4 mg of quercetin equivalent/g d.w and maximal LOX inhibitory activity (52.67%) at 800 μg/mL concentrations were identified in the ethanolic extracts of leaf galls of T.chebula. The higher LOX inhibitory activity was positively correlated to the high content of total polyphenols/flavonoids. The results of this study confirm the folklore use of T. chebula leaves gall extracts as a natural anti-inflammatory agent and justify its ethnobotanical use. Therefore, the results encourage the use of T. chebula leave gall extracts for medicinal health, functional food, and nutraceuticals applications.
  2,922 46 2
Bio-enhancing effect of Piperine with Metformin on lowering blood glucose level in Alloxan induced diabetic mice
Shubham Atal, Sarjana Atal, Savita Vyas, Pradeep Phadnis
January-March 2016, 8(1):56-60
DOI:10.4103/0974-8490.171096  PMID:26941537
Background: Diabetes mellitus is the most rampant metabolic pandemic of the 21 st century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. Objective: To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Materials and Methods: Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). Results: The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14 th and 28 th day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Conclusion: Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects.
  2,911 55 1
The effect of Ultrafine process on the Dissolution, Antibacterial activity, and Cytotoxicity of Coptidis rhizoma
Zhen-Yu Jiang, Hai-Ying Deng, Zhi-Jun Yu, Jun-Yan Ni, Si-He Kang
January-March 2016, 8(1):71-77
DOI:10.4103/0974-8490.171097  PMID:26941540
Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6-8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve.
  2,187 44 -
Isolation and Characterization of Chemopreventive agent from Sphaeranthus amaranthoides Burm F
S Gayatri, R Suresh, C Uma Maheswara Reddy, K Chitra
January-March 2016, 8(1):61-65
DOI:10.4103/0974-8490.171101  PMID:26941538
Objective: To investigate the in vitro cytotoxic effect and to isolate and characterize a chemopreventive secondary metabolite from Sphaeranthus amaranthoides Burm F (sivakaranthai). Materials and Methods: In vitro cytotoxic effect was carried out by 3 (4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide assay. Different concentrations of the extracts were tested on three different cell lines namely A549, HT29, and MCF7. The chloroform extract was subjected to column chromatography, and the isolated compound was characterized by various spectral methods and by single crystal X-ray crystallography. Results: The concentration that cause 50% growth inhibition value of chloroform extract was found to be 0.9 and 19 μg/mL against MCF7 and A549 cell lines, respectively. Chloroform extract was subjected to column chromatography for the isolation of phytoconstituent. The structure of the isolated compound was identified by spectroscopic techniques such as infrared, nuclear magnetic resonance, XRD, and mass spectroscopy. On comparison of complete spectral detail of the compound, the proposed structure was identified as chrysosplenol D (a flavonoid). Chrysosplenol D was isolated for the first time from this plant. Conclusion: The chloroform extract had higher cytotoxic effect, and the isolated chrysosplenol D may be responsible for the anti-proliferative effect of the plant.
  2,089 36 1