Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 11  |  Issue : 3  |  Page : 236-243

Mitigation of radiation-induced oxidative stress by methanolic extract of Tragia involucrata in swiss albino mice


1 Department of Biochemistry, Mangalore University, Jnana Kavery, Chikka Aluvara, Kodagu, Karnataka, India
2 Department of Applied Zoology, Mangalore University, Mangalore, Karnataka, India
3 Department of Biochemistry, College of Fisheries, KVAFSU, Mangalore, Karnataka, India
4 CARRT, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India

Correspondence Address:
Dr. Chandrashekhar Gajanan Joshi
Department of Biochemistry, Mangalore University, Jnana Kavery, Chikka Aluvara, Thorenur Post, Kushalnagar Hobli, Somwarpet, Kodagu - 571 232, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_177_18

Rights and Permissions

Background: Tragia involucrata L. has been used in Indian traditional medicine since centuries to treat various ailments. The plant remains unexplored for its radioprotective properties and hence the present study. Objective: The main objective of the study is to ascertain the radioprotective effects of T. involucrata methanolic extract (TME) in Swiss albino mice against whole-body gamma radiation. Materials and Methods: The acute toxicity of TME was evaluated. The optimal protective dose of TME against radiation-induced mortality in mice was determined by survival analysis using the Kaplan–Meier curves. To understand the mechanism of radioprotection, TME was tested for hematological changes and antioxidant levels in mice by injecting100 mg/kg body weight intraperitoneally for 5 days and irradiated with a sublethal dose of 6 Gy gamma radiation. Results: The lethal dose 50%/of TME was about 645.65 mg/kgbw. The pretreatment of mice with 100 mg/kgbw of TME increased its survivability to 30% compared with the radiation control group and hence is considered as a radioprotective dose. The lethal dose 50%/30% of the irradiation alone group was found to be 9 Gy and 10.35 Gy for the TME + irradiation group. Hence, the dose reduction factor was about 1.15. The radiation decreased the hematological parameters in the blood, but on pretreatment with TME (100 mg/kgbw), increase in levels was noted. The antioxidant enzyme levels in the mice liver homogenate were found to be replenished in the test group compared with the radiation control. Conclusion: The present study indicates the protective role of TME against gamma radiation-induced mortality and oxidative stress. Hence, it is proposed as a candidate for radioprotection.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed348    
    Printed28    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal