Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
SHORT COMMUNICATION
Year : 2019  |  Volume : 11  |  Issue : 1  |  Page : 92-97

Ashwagandha reverses the dieldrin-induced cognitive impairment by modulation of oxidative stress in rat brain


1 Department of Physiology, Tripura Medical College, Agartala, Tripura
2 Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Nagpur, Maharashtra, India
3 Department of Zoology, Environmental Toxicology Lab, University of Rajasthan, Jaipur, Rajasthan, India
4 Department of Biochemistry, University College of Medical Science, University of Delhi, New Delhi, India

Correspondence Address:
Dr. Sanvidhan G Suke
Department of Biotechnology, Priyadarshini Institute of Engineering and Technology, Nagpur - 440 019, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_77_18

Rights and Permissions

Dieldrin (DLD) is an organochlorine pesticide heavily used in agriculture to control pests. Widespread exposures of DLD to human population are likely to contribute in neurological disorders. Withania somnifera (WSF), commonly known as “ashwagandha,” is used for its broad spectrum of pharmacological activity. The present study was designed to investigate the effect of WSF (100 mg/kg) on DLD (5 mg/kg)-induced modulation of cognitive function and oxidative stress in male Wistar rats. Cognitive function was measured using step-down latency (SDL) on a continuous avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was estimated by measuring brain malondialdehyde (MDA) level, protein carbonyl (PC), and reduced glutathione (GSH) activity. Significant reduction in both acquisition and retention in SDL was found for the DLD-treated group at the end of the exposure study as compared to the control (P < 0.001). DLD caused a significant prolongation in both acquisition and retention in TL after 28 days of the treatment as compared to the control (P < 0.001). Four-week treatment of WSF antagonized the effect of DLD on SDL and TL at the 29th day. DLD produced a statistically significant increase in the brain MDA and PC levels (P < 0.001), and a significant decrease in the brain GSH activity (P < 0.001). Treatment with WSF attenuated the effect of DLD on MDA, PC, and GSH activities. Thus, the finding of this study suggests that WSF has potential in reversing cognitive dysfunction and oxidative stress induced by toxicants such as DLD in the brain. Abbreviations Used: DLD: Dieldrin; GSH: Reduced glutathione; LD: Lethal dose; LPO: Lipid peroxidation; MDA: Malondialdehyde; OCP: Organochlorine pesticide; PC: Protein carbonyl; SDL: Step-down latency; SFZ: Shock-free zone; TL: Transfer latency; WSF: Withania Somnifera.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed122    
    Printed10    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal