Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 11  |  Issue : 1  |  Page : 51-59

Participation of cytokines, opioid, and serotoninergic systems on antinociceptive and anti-inflammatory activities of Simira grazielae peixoto (Rubiaceae)


1 Department of Physiological Sciences, Laboratory of Pharmacology, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
2 Graduate Program in Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Graduate Program in Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro; Department of Pharmaceutical Sciences, Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
4 Graduate Program in Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro; Laboratory of Chemical Sciences/Graduate Program in Natural Sciences, Science and Technology Center, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
5 Department of Physiological Sciences, Laboratory of Pharmacology, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Rio de Janeiro; Multicenter Graduate Program in Physiological Sciences, Institute of Biological Sciences and Health, Federal University Rural of Rio de Janeiro, Seropédica, RJ, Brazil

Correspondence Address:
Dr. Bruno Guimarães Marinho
Departamento de Ciencias Fisiologicas, Laboratorio de Farmacologia, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 07, 23890-000, Seropedica, RJ
Brazil
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_99_18

Rights and Permissions

Background: Simira grazielae P. is widely found at Brazil. S. grazielae have been used to treat pain and inflammation in the Northeast of Brazil. Objective: This study investigated the mechanisms of the extract and partitions using pharmacological techniques in mice. Materials and Methods: Male Swiss mice (20–22 g) were used in models of pain (acetic acid-induced abdominal writhing, formalin, and tail-flick tests) and inflammation (edema paw and air pouch tests) as well as in model for the evaluation of motor activity (open field test). Furthermore, we evaluate the probable action mechanism of S. grazielae using naloxone, L-nitro-arginine methyl ester, L-arginine, glibenclamide, atropine, 4-chloro-DL-phenylalanine, and ondansetron in tail-flick test. The cytokines production was also evaluated. The methanolic extract from the S. grazielae and its partitions were administered orally at doses of 10–100 mg/kg. Results: Methanolic extract from the wood of S. grazielae (SGM) and its partitions showed antinociceptive properties in models of acute pain (SGM and ethyl acetate partition [SGMAc]) as well as in models of inflammation (dichloromethane partition [SGMD]). Prior administration of ondansetron and naloxone reduced the antinociceptive effect of SGMAc. SGMD reduced the production of tumor necrosis factor-α (TNF-α) induced by carrageenan. Conclusion: The results show that the anti-inflammatory activity showed by SGMD involves to reduction of the TNF-α, and the antinociceptive activity showed by SGMAc has relation to participation of the serotoninergic receptors and opioid system. These evidence justify the popular therapeutic use of this species in the control of pain and inflammation. Abbreviations Used: PCPA: 4-chloro-DL-phenylalanine, SGM: Methanolic extract of Simira grazielae, SGMAc: Ethyl acetate partition, SGMD: Dichloromethane partition, SGMH: Hexane partition, SGMB: Butanol partition, SGMR: Residual partition, 5-HT: Serotonin, TNF-α: Tumor necrosis factor-α, n-C6H14: Hexane, CH2Cl2: Dichloromethane, EtOAc: Ethyl acetate, BuOH: Butanol, TLC: Thin-layer chromatography, HPLC: High-performance liquid chromatography, DAD: Diode array detector, COX-2: Cyclooxygenase-2, PGE2: Prostaglandin E2, eNOS: Endothelial nitric oxide synthase, NO: Nitric oxide, TRPA 1: Transient receptor potential cation, LT: Latency time, IBL: Increase in baseline, BL: Baseline.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed271    
    Printed15    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal