Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 10  |  Issue : 4  |  Page : 339-342

Central nervous system activity of phenol-rich fraction of Piper sylvaticum roots


1 Department of Pharmacy, Goel Institute of Pharmacy and Sciences, Lucknow, Uttar Pradesh, India
2 Department of Pharmacognosy and Ethnopharmacology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India

Correspondence Address:
Dr. Akash Ved
Department of Pharmacy, Goel Institute of Pharmacy and Sciences, Faizabad Road, Lucknow, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_125_17

Rights and Permissions

Obective: Piper sylvaticum Roxb. is an important folk medicine in Indian Traditional System of Medicine widely used by different tribes in many countries. In the present study, the anticonvulsant activity of extract/fractions of Piper sylvaticum (PS) roots was investigated. Materials and Methods: 70% ethanolic extract of PS roots was successively extracted using hexane and ethyl acetate to prepare various fractions. Total phenol content was found at maximum 324.65 mg/gallic acid equivalent/g in ethyl acetate fraction (EAF) (phenol-rich fraction [PRF]). High-performance thin-layer chromatography fingerprinting profiling of PS roots was performed. The anticonvulsant properties of the EAF of roots of PS were examined by maximal electroshock method as compared to standard phenytoin (25 mg/kg body weight). Result: It was found that EAF shows potent anticonvulsant activity at different dose levels against maximum electroshock seizure-induced convulsions in Swiss albino mice. Conclusion: From the observation, it can be concluded that the current study has expressed that the phenol-rich EAF of the ethanolic extract of the roots of PS has shown the dose-dependent anticonvulsant effect in mice. The anticonvulsant potential may be due to the presence of phenolic compounds in PRF. The outcomes suggested a high potential for application of EAF of PS root as an anticonvulsant agent. Abbreviations Used: HPTLC: High-performance thin-layer chromatography, OECD: Organization for Economic Co-operation and Development, GAE: Gallic acid equivalent, PRF: Phenol-rich fraction.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed240    
    Printed21    
    Emailed0    
    PDF Downloaded6    
    Comments [Add]    

Recommend this journal