Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 10  |  Issue : 1  |  Page : 9-15

Cytotoxic Compounds from Wrightia pubescens (R.Br.)


1 Biology Department, De La Salle University Laguna Campus, Biñan City, Laguna 4024; De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
2 Biology Department; Center for Natural Science and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
3 Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
4 National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Li-Nong St., Sec. 2, Taipei 112, Taiwan
5 Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922; De La Salle University Laguna Campus, Biñan City, Laguna 4024, Philippines

Correspondence Address:
Dr. Mariquit M De Los Reyes
Biology Department, De La Salle University, 2401 aft Avenue, Manila 0922
Philippines
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_45_17

Rights and Permissions

Background: Mixtures of ursolic acid (1) and oleanolic acid (2) (1:1 and 1:2), oleanolic acid (2), squalene (3), chlorophyll a (4), wrightiadione (5), and α-amyrin acetate (6) were isolated from the dichloromethane (CH2Cl2) extracts of the leaves and twigs of Wrightia pubescens (R.Br.). Objectives: To test for the cytotoxicity potentials of 1–6. Materials and Methods: The antiproliferative activities of 16 against three human cancer cell lines, breast (MCF-7) and colon (HT-29 and HCT-116), and a normal cell line, human dermal fibroblast neonatal (HDFn), were evaluated using the PrestoBlue® cell viability assay. Results: Compounds 4, 1 and 2 (1:2), 2, 1 and 2 (1:1), and 5 exhibited the most cytotoxic effects against HT-29 with half maximal inhibitory concentration (IC50) values of 0.68, 0.74, 0.89, 1.70, and 4.07 μg/mL, respectively. Comparing 2 with its 1:1 mixture with 1 (IC50 = 1.70 and 7.18 μg/mL for HT-29 and HCT-116, respectively) and 1:2 mixture with 1 (0.74 and 3.46 μg/mL for HT-29 and HCT-116, respectively), 2 also showed strong cytotoxic potential against HT-29 and HCT-116 (0.89 and 2.33 μg/mL, respectively). Unlike the mixtures which exhibited low effects on MCF-7 (IC50 = 20.75 and 30.06 μg/mL for 1:1 and 1:2, respectively), 2 showed moderate activity against MCF-7 (10.99 μg/mL). Compound 6 showed the highest cytotoxicity against HCT-116 (IC50 = 4.07 μg/mL). Conclusion: Mixtures of 1 and 2 (1:1 and 1:2), 2, 3, 4, 5, and 6 from the CH2Cl2extracts of the leaves and twigs of W. pubescens (R.Br.) exhibited varying cytotoxic activities. All the compounds except 6 exhibited the strongest cytotoxic effects against HT-29. On the other hand, 6 was most cytotoxic against HCT-116. Overall, the toxicities of 16 were highest against HT-29, followed by HCT-116 and MCF-7. All the compounds showed varying activities against HDFn (IC50 <30 μg/mL). Abbreviation Used: IC50: Half maximal inhibitory concentration.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed771    
    Printed29    
    Emailed0    
    PDF Downloaded7    
    Comments [Add]    

Recommend this journal