Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 10  |  Issue : 1  |  Page : 49-54

Anticonvulsant and Antioxidant Effects of Musa sapientum Stem Extract on Acute and Chronic Experimental Models of Epilepsy


1 Department of Pharmacology, SMS and R, Sharda University, Greater Noida, Uttar Pradesh, India
2 Department of Pharmacology, UCMS, New Delhi, India

Correspondence Address:
Dr. Ashok Kumar Dubey
H-20, Kailash Colony, New Delhi - 110 048
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_31_17

Rights and Permissions

Background: Musa sapientum (banana) plant extract has been shown to possess antioxidant activity in previous studies. Neuronal injury resulting from oxidative stress is an important factor involved in pathogenesis of epilepsy. Objective: The present study aimed to evaluate the anticonvulsant activity of M. sapientum stem extract (MSSE) in acute and chronic experimental models in mice and its effects on various markers of oxidative stress in the brain of pentylenetetrazole (PTZ)-kindled animals. Material and Methods: Maximal electroshock seizures (MES) and PTZ-induced convulsion models were used for acute studies. For the chronic study, the effect of MSSE on the development of kindling was studied. For the evaluation of the effects of MSSE on oxidative stress in brain, malondialdehyde (MDA) and reduced glutathione (GSH) levels were estimated in the brains of the kindled animals. Results: MSSE significantly increased the latency to onset of myoclonic jerks and the duration of clonic convulsions following PTZ administration. The MSSE pretreated group showed significantly reduced mean seizure score on PTZ-induced kindling. There was a significant increase in the brain MDA levels and decrease in GSH levels in response to PTZ-induced kindling. On MSSE pretreatment, there was a significant decrease in the MDA levels in the brains, though the increase in the GSH levels was not significant. Conclusion: The results from this study suggest the presence of significant anticonvulsant activity in MSSE, in both acute and chronic PTZ-induced seizure models, which could be due to its antioxidant activity, as is reflected by the change in oxidative stress markers in brain.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1649    
    Printed87    
    Emailed0    
    PDF Downloaded48    
    Comments [Add]    

Recommend this journal