Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 9  |  Issue : 3  |  Page : 221-229

Uncaria tomentosa (Willd. ex Schult.) DC (Rubiaceae) sensitizes THP-1 cells to radiation-induced cell death


1 Program in Biomolecular Science, Laurentian University, Sudbury, ON P3E 2C6; Health Sciences North, Sudbury, ON P3E 5J1, Canada
2 Health Sciences North, Sudbury, ON P3E 5J1, Canada
3 Program in Biomolecular Science, Laurentian University, Sudbury, ON P3E 2C6; Health Sciences North, Sudbury, ON P3E 5J1; Division of Medical Science, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6; Health Sciences North Research Institute, Sudbury, ON, P3E 5J1, Canada

Correspondence Address:
Robert M Lafrenie
Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/pr.pr_83_16

Rights and Permissions

Background: Uncaria tomentosa (Willd. ex Schult.) DC (Rubiaceae), known as Cat's Claw or Uña de gato, is a traditionally used medicinal plant native to Peru. Some studies have shown that U. tomentosa can act as an antiapoptotic agent and enhance DNA repair in chemotherapy-treated cells although others have shown that U. tomentosa enhanced apoptosis. Objective: To determine if treatment with U. tomentosa can significantly enhance cell death in THP-1 cells exposed to ionizing radiation. Materials and Methods: THP-1 monocyte-like cells were treated with ethanolic extracts of U. tomentosa in the presence or absence of bacterial lipopolysaccharide and then exposed to ionizing radiation. Cell proliferation was assessed by MTT and clonogenic assays and the effects on cell cycle measured by flow cytometry and immunoblotting. Changes in cell signaling were determined by immunoblotting and cytokine ELISA and activation of apoptosis measured by caspase activation and DNA fragmentation analysis. Results: Treatment of THP-1 cells with U. tomentosa had a small effect on cell proliferation. However, when the U. tomentosa-pretreated cells were also subjected to 5–9 Gy ionizing radiation, they showed a significant decrease in cell proliferation and increased cellular apoptosis as measured by DNA fragmentation and caspase activation. Treatment with U. tomentosa also decreased the expression of Cyclin E and Cyclin B, key regulators of normal cell cycle progression, and decreased the phosphorylation of various stress-activated, cell survival proteins including p38, ERK, and SAP/JNK kinase. Conclusions: These results suggest that U. tomentosa could be useful in enhancing cell death following anticancer therapies including ionizing radiation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed229    
    Printed6    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal