Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 8  |  Issue : 4  |  Page : 244-248

Kayeassamin a isolated from the flower of Mammea siamensis triggers apoptosis by activating caspase-3/-8 in hl-60 human leukemia cells


1 Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
2 Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan; School of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam, Thailand
3 Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
4 Faculty of Pharmacy, Payap University, Muang, Chiang Mai 50000, Thailand

Correspondence Address:
Yukihiro Shoyama
Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298
Japan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8490.188884

Rights and Permissions

Background: Mammea siamensis (Miq.) T. Anders. is used as a medicinal plant in Thailand and has several traditional therapeutic properties. In a previous study, we isolated eight compounds from the flower of M. siamensis and demonstrated that kayeassamin A (KA) exhibited potent antiproliferative activity against human leukemia and stomach cancer cell lines. Objective: In this study, we investigated the effect of KA on cell viability and apoptotic mechanisms in HL-60 human leukemia cells. Materials and Methods: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nuclear morphology and DNA fragmentation were observed using Hoechst 33258 staining and agarose gel electrophoresis, respectively. The sub-G1 phase of cells was analyzed by flow cytometry after the cellular DNA had been stained with propidium iodide. The protein levels of poly (ADP-ribose) polymerase (PARP) and caspases were determined by Western blotting. Results: KA exhibited a significant cytotoxic effect in a dose- and time-dependent manner, and induced chromatin condensation, DNA fragmentation, and sub-G1 phase DNA content, known as molecular events associated with the induction of apoptosis. In addition, KA strongly induced the activation of PARP and caspase-3 and -8, with weak caspase-9 activation. Furthermore, KA-induced DNA fragmentation was abolished by pretreatment with z-VAD-FMK (a broad caspase inhibitor), z-DEVD-FMK (a caspase-3 inhibitor), and z-IETD-FMK (a caspase-8 inhibitor), but not by z-LEHD-FMK (a caspase-9 inhibitor) pretreatment. Conclusion: These results indicate that KA triggers apoptotic cell death by activation of caspase-3 and -8 in HL-60 cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2742    
    Printed73    
    Emailed0    
    PDF Downloaded46    
    Comments [Add]    

Recommend this journal