Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 6  |  Issue : 4  |  Page : 292-296

Amelioration of insulin resistance by Rk 1 + Rg 5 complex under endoplasmic reticulum stress conditions


Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea

Correspondence Address:
Deok-Chun Yang
Department of Oriental Medicinal Materials and Processing, 1, Seocheondong, Giheunggu, Yongin Si, Gyeonggi-do, 446-701
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8490.138257

Rights and Permissions

Background: Diabetes mellitus is a metabolic syndrome exaggerated by stress conditions. Endoplasmic reticulum stress (ERS) impairs the insulin signaling pathway making the diabetic conditions worsen. Pharmacological agents are supplied externally to overcome this malfunction. Ginsenosides from Panax ginseng C.A Meyer possesses many pharmacological properties and are used for the treatment of diabetes. Objective: To investigate the effects of the Rk 1 +Rg 5 complex on the amelioration of insulin resistance in 3T3-L1 cells under endoplasmic reticulum stress conditions. Materials and Methods: Heat-processed ginseng extracts are found to contain many pharmacologically active ginsenosides. Among them Rk 1 +Rg 5 is found to be present in higher concentrations than the other minor ginsenosides. The Rk 1 +Rg 5 complex was tested for its effect in the 3T3-L1 insulin-resistant model and subjected to the MTT assay, glucose oxidase assay and gene expression studies using RT-PCR and real-time PCR under endoplasmic reticulum stress conditions. Results: Rk 1 +Rg 5 treatment is found to increase the glucose uptake into the cells when compared to that of a positive control (tunicamycin treatment group, TM). Further we have analyzed the role at gene expression level. The Rk 1 +Rg 5 complex was found to show an effect on the IGF 2R receptor, CHOP-10, and C/EBP gene at a particular treated concentration (50 μM). Moreover, stress condition (about 50% decreases) was overcome by the ginsenoside treatments at 50 μM. Conclusion: The present results showed that under endoplasmic reticulum stress conditions Rk 1 +Rg 5 complex exhibits a potential protective role in insulin-resistant 3T3-L1 cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2495    
    Printed73    
    Emailed1    
    PDF Downloaded21    
    Comments [Add]    
    Cited by others 1    

Recommend this journal