Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2011  |  Volume : 3  |  Issue : 2  |  Page : 85-94

An examination of the medicinal potential of Scaevola spinescens: Toxicity, antibacterial, and antiviral activities


1 Department of Biomolecular and Physical Sciences, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan;Environmental Futures Centre, Griffith University, 170 Kessels Rd, Nathan
2 Department of Biomolecular and Physical Sciences, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan

Correspondence Address:
Ian E Cock
Department Biomolecular and Biomedical Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia

Login to access the Email id

Source of Support: School of Biomolecular and Physical Sciences, Griffi th University, Conflict of Interest: None


DOI: 10.4103/0974-8490.81955

Rights and Permissions

Background: Scaevola spinescens is an endemic Australian native plant with a history of use as a medicinal agent by indigenous Australians. Yet the medicinal bioactivities of this plant are poorly studied. Materials and Methods: S. spinescens solvent extracts were tested for antimicrobial activity, antiviral activity and toxicity in vitro. Results: All extracts displayed antibacterial activity in the disc diffusion assay. The methanol extract proved to have the broadest specificity, inhibiting the growth of 7 of the 14 bacteria tested (50%). The water, ethyl acetate, chloroform, and hexane extracts inhibited the growth of 6 (42.9%), 5 (35.7%), 5 (35.7%), and 4 (28.6%) of the 14 bacteria tested, respectively. S. spinescens methanolic extracts were equally effective against Gram-positive (50%) and Gram-negative bacteria (50%). All other extracts were more effective at inhibiting the growth of Gram-negative bacteria. All extracts also displayed antiviral activity in the MS2 plaque reduction assay with the methanol, water, ethyl acetate, chloroform, and hexane extracts inhibiting 95.2 ± 1.8%, 72.3 ± 6.3%, 82.6 ± 4.5%, 100 ± 0% and 47.7 ± 12.9% of plaque formation, respectively. All S. spinescens extracts were nontoxic in the Artemia fransiscana bioassay with no significant increase in mortality induced by any extract at 24 and 48 h. The only increase in mortality was seen for the water extract at 72 h, although even this extract displayed low toxicity, inducing only 41.7 ± 23.3% mortality. Conclusions: The lack of toxicity of the S. spinescens extracts and their inhibitory bioactivity against bacteria and viruses validate the Australian Aboriginal usage of S. spinescens and indicates its medicinal potential.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3862    
    Printed214    
    Emailed2    
    PDF Downloaded47    
    Comments [Add]    
    Cited by others 9    

Recommend this journal