Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 2  |  Issue : 3  |  Page : 186-189 Table of Contents     

A new alkaloid isolated from Abies webbiana leaf


1 College of Pharmacy, IFTM, Lodhipur Rajput, Moradabad 244001, Uttar Pradesh, India
2 Bengal Institute of Pharmaceutical Sciences, Kalyani 741235, India
3 Bengal School of Technology (A College of Pharmacy), Sugandha, Hooghly 712102, West Bengal, India

Date of Submission21-Jan-2010
Date of Decision02-Jun-2010
Date of Web Publication19-Jul-2010

Correspondence Address:
Sanjib Bhattacharya
Bengal School of Technology (A College of Pharmacy), Sugandha, Hooghly-712 102, West Bengal
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0974-8490.65516

Rights and Permissions
   Abstract 

A new alkaloid namely 1-(4'-methoxyphenyl)-aziridine was isolated from the leaf of Abies webbiana Lindl. (Pinaceae), grown in Sikkim Himalayan region of India. Its chemical structure was elucidated on the basis of elemental and spectral analyses. This is the first experimental report of the isolation of any alkaloid from A. webbiana.

Keywords: Abies webbiana Lindl., aziridine alkaloid, leaves, Pinaceae


How to cite this article:
Ghosh AK, Sen D, Bhattacharya S. A new alkaloid isolated from Abies webbiana leaf. Phcog Res 2010;2:186-9

How to cite this URL:
Ghosh AK, Sen D, Bhattacharya S. A new alkaloid isolated from Abies webbiana leaf. Phcog Res [serial online] 2010 [cited 2019 Nov 22];2:186-9. Available from: http://www.phcogres.com/text.asp?2010/2/3/186/65516


   Introduction Top


Abies webbiana Lindl. (Pinaceae), commonly known as Talispatra in Bengali and Hindi, Talispatram in Sanskrit and Indian Silver Fir in English, is a large, tall, evergreen tree occurring in the Himalayan region from Kashmir to Assam states in India. It is also found in Afghanistan (Hindu Kush range), Tibet (China), Nepal, in Karakoram range and Bhutan at an altitude of 2500-4000 m. [1] In Ayurveda, the traditional system of Indian medicine, this plant had been described for using against swasa (chronic obstructive pulmonary diseases), kasa (cough), gulma (tumor), agnimandya (hypochlorhydria), amadosha (amoebiasis), hikka (hiccup), chhardi (vomiting), krimi (helminthiasis) and mukharoga (mouth disorders). [2] The leaves of this plant have been traditionally used for their carminative, stomachic, expectorant, decongestant, antiseptic, astringent, antihyperglycemic, female antifertility, febrifuge and anti-spasmodic properties. The decoctions of the leaves are useful orally in cases of cough, phthisis, asthma, chronic bronchitis and catarrh of the bladder and other pulmonary infections. Furthermore, leaves of the plant have been used traditionally for its chemotherapeutic efficacies in several ailments like rheumatism, hoarseness, chronic bronchitis and other pulmonary affections. [3],[4],[5],[6]

Previous workers reported that the crude extracts of A. webbiana leaf had antibacterial, mast cell stabilizing, anxiolytic, anti-tumor, anti-inflammatory, antitussive and central nervous system (CNS) depressant actions. [7],[8],[9],[10],[11],[12] Certain chemical constituents, mainly monoterpenes (from essential oil), flavonoids, biflavonoid glycosides, phytosterols and diterpene glycosides (taxol like compounds) were isolated from A. webbiana leaf. Anti-inflammatory effect was exhibited by (+)-pinitol, isolated from the leaf. [3],[6],[13],[14],[15],[16] From previous preliminary chemical investigation by the authors, it became apparent that the leaf of A. webbiana had a multitude of constituents including alkaloids. [17] However, no work has been reported on the isolation of any alkaloid from this plant. The present paper therefore attempts to report the isolation and molecular characterization of a new alkaloid present in the leaf of A. webbiana from India.


   Materials and Methods Top


General experimental techniques

Melting point was determined using a Sturat SMP heating stage microscope and was uncorrected. UV spectrum was obtained with a Shimadzu UV-160 spectrophotometer. IR spectrum was recorded with a Perkin-Elmer 683 infrared spectrometer. Nuclear magnetic resonance (NMR) ( 1H, 13C) spectra were recorded on a Bruker AV300 Supercon NMR System with chemical shifts being represented in parts per million (ppm) and with tetramethylsilane (TMS) as an internal standard. EI-MS and HR-FAB-MS were recorded on a Autospec-Ultima ETOF MS spectrometer at an ionization voltage of 70 eV. Elemental analysis was performed on Thermo finnigan FLASH EA 1112 CHNS(O) Analyzer. Column chromatography was performed on silica gel (200-300 mesh, SISCO Research Lab Pvt. Ltd., Mumbai, India). Fractions were monitored by thin layer chromatography (TLC) and the spots were visualized by spraying the TLC plates with Dragendorff's reagent. The TLC employed pre-coated silica gel plates (aluminum sheets 20Χ20 cm, silica gel 60 F254 of Merck K GaA). All solvents and reagents used were of analytical grade obtained from Merck.

Plant material

A. webbiana leaves were collected from the mature trees grown near Gangtok, Sikkim, India, during the month of October-November 2008 and were identified at Central National Herbarium, Botanical Survey of India, Shibpur, Howrah, West Bengal, India. The voucher specimen (No. AW-I) was preserved for future reference. The leaves were separated from branches, washed thoroughly with tap water and shade dried at room temperature (24-26°C) and then pulverized by a mechanical grinder. The powder was then passed through a 40-mesh sieve and stored in a well closed vessel until use.

Extraction and isolation

The powdered leaves (400 g) were macerated with 1% HCl (1200 ml) overnight at room temperature (24-26°C), at a pH of 2.0. Then the mixture was made alkaline by adding liq. NH 4 OH solution (25% v/v) till the pH was 9.0. Red wine color of the acidic extract changed to deep blackish red on becoming alkaline. The alkaline mixture was shaken well, strained with muslin cloth, and filtered with Whatman no. 1 filter paper. The filtrate was concentrated and was successively extracted with chloroform. All the chloroform layers were pooled together. Sodium sulfate treatment was performed to remove the traces of water from chloroform extract. The chloroform extract was evaporated to dryness in vacuo using a rotary evaporator at 30°C to obtain a residue (9.23 g). The residue was subjected to silica gel column chromatography, eluted with a mobile phase of ethyl acetate: n-hexane (gradient, 1:0 → 0:1) to yield 50 fractions, monitored by TLC. Fractions 24-36 were mixed together and concentrated in vacuo at 30°C to one-fourth of its volume and kept in refrigerator (at 6-8°C) overnight. Needle-like yellowish crystals were obtained, separated by filtration, purified by re-crystallization by methanol to obtain compound 1 (C-1, 163 mg, 0.041% w/w). Other column fractions did not yield any appreciable result.


   Results Top


C-1: 1-(4'-methoxyphenyl)-aziridine

It was obtained as white needle-shaped crystals after re-crystallization, and gave a positive reaction to Dragendorff's, iodoplatinate and other alkaloid reagents. MP: 35-36°C. Rf : 0.73 (EtOAc-n-hexane, 35:65). IR (NaCl) ν: 1614, 1376, 1169 cm-1 . UV/vis λmax (MeOH) nm (log ε): 224 (3.34), 198 (2.86). 1 H NMR (400 MHz, CDCl 3) δH : 2.12 (3H, s, OMe), 1.68 (4H, s, 2 CH 2 aziridine), 6.73 (2H, d, J = 8.0 Hz, H-2′, 6′), 7.01 (2H, d, J = 8.4 Hz, H-3′, 5′). 13 C NMR (100 MHz DMSO-d 6) δC : 51.06 (CH3 , OMe), 27.3 (CH 2 aziridine-3) 28.1 (CH 2 aziridine-2), 111.5 (CH, Ar-3′) 110.3 (CH, Ar-5′), 112.1 (CH, Ar-2′), 112.7 (CH, Ar 6′), 136.2 (C, Ar-1′), 144.8 (C, Ar-4′). MS (EI, 70 eV): m/z (%):149 [M + H+] (100), 135 (68), 107 (19). HR-FAB-MS: m/z [M + H +] 149.1932 (calcd for C9H11 NO, 149.1925). Anal. C 72.76, H 7.33, N 9.44, O 10.90 (calcd for C9H11 NO, C 72.46, H 7.43, N 9.39, O 10.72).


   Discussion Top


The alkaloid-enriched chloroform extract of the leaves of A. webbiana was subjected to silica gel column chromatography to afford a new alkaloid (C-1). Compound 1 (C-1) was isolated as white needle-like crystals and showed a positive response to different alkaloid reagents. The molecular formula was determined to be C9H 11 NO by high-resolution fast atom bombardment mass (HR-FAB-MS) spectrum, which gave a molecular ion at m/z 149.1932. It was further confirmed by elemental analysis. The EI-MS spectrum indicated a molecular fragment at m/z 135 (M + H + expected), which matched the molecular structure [Figure 1] of C-1, if the CH 3 group is liberated. Another peak at m/z 107 (M + H + expected) also supported the structure [Figure 1], which may occur due to the liberation of -CH 2 -CH 2 - group from the heterocyclic ring. The IR spectrum displayed absorption bands at 1376 cm-1 due to C-N vibration, at 1614 for the presence of aromatic C=C bond, at 1169 for the presence of C-O and this vibration chiefly occurs if oxygen is attached with an aromatic carbon. The 1 H NMR spectra of C-1 showed a singlet of three protons at 2.12, probably methyl proton which is de-shielded, may be attached with oxygen or aromatic ring system. A singlet of four protons at 1.68 indicated the presence of -CH 2 -CH 2 - group. Typical splitting (doublets) at aromatic region indicated that the aromatic ring may be para-substituted benzene. The 13 C-NMR spectrum exhibited nine carbon signals. Based on the above spectral data and elemental analysis, the chemical structure of C-1 was determined to be 1-(4'-methoxyphenyl)-aziridine as shown in [Figure 1].

The chemical synthesis of numerous aziridine-containing compounds, including N-aryl aziridines, were reported by previous workers. [18],[19],[20] The observed 1 H NMR spectroscopic data of isolated compound were found to be in agreement with previously reported values of synthetic compound. [18]

Therefore, in the present investigation a new aziridine alkaloid C-1, i.e., 1-(4′-methoxyphenyl)-aziridine, from the leaves of A. webbiana was isolated and characterized, the melting point of which was found to be 35-36°C. It is noteworthy to mention here that isolation of the compound (C-1) was possible by maceration at room temperature (24-26°C) and subsequent concentration of extract at lower temperature (≤30°C). Otherwise, there would be every chance of degradation of the compound by heat if it was tried to be isolated by application of heat like in continuous hot percolation by Soxhlet apparatus. Application of heat in extraction methods, however, would extract more constituents to give more compounds.

Aziridines serve as useful intermediates in synthesis of complex natural products as in the case of certain alkaloids, kainoids, mesembrine, platynesine, sphingosines, actinomycin, epicapreomycidine, feldamycin, etc. The aziridine functionality is also present in a small number of naturally occurring molecules mainly from microbial and marine sources. The biological properties of aziridine containing compounds such as azinomycins, mitomycins, ficellomycin, miraziridine, maduropeptin, and azicemicins are of significant interest. The antibiotic and antimicrobial properties of several of aziridine-containing compounds are well known. Triethylenemelamine (TEM), hexamethylenemelamine (HMM), thiotepa, mitomycin C are effective antitumor drugs used clinically. Recently, natural aziridine alkaloids have been isolated from both terrestrial and marine species, mainly from invertebrates and lower plants, demonstrating prominent antitumor and antimicrobial effects. [21],[22],[23]

To the best of our knowledge, this 1-(4′-methoxyphenyl)-aziridine is the first alkaloid isolated from A. webbiana leaf and perhaps this is the first demonstration of any aziridine alkaloid, an unusual alkaloid in higher plants, in the family Pinaceae especially. The biological evaluations of C-1 are presently underway. The aziridine alkaloid isolated in the present study may serve as an important source of drug prototypes and leads for drug discovery in due course.


   Acknowledgments Top


The authors are thankful to the Director, Chembiotek Research International, Kolkata, India, and the Head SAIF, IIT Bombay, Mumbai, India, for instrumental facilities. One of the authors (DS) is thankful to the authority of Bengal Institute of Pharmaceutical Sciences, Kalyani, West Bengal 741235, India, for providing the necessary laboratory facilities.

 
   References Top

1.Ganguly HC, Kar AK. College botany. Vol. 2. Kolkata: Books and Allied (P) Ltd; 1999.  Back to cited text no. 1      
2.Anonymous. Ayurvedic Pharmacopoeia of India. Part I, 1 st ed. Vol. 4. New Delhi: Govt. of India; 2004.  Back to cited text no. 2      
3.Anonymous. The wealth of India, raw materials. Vol. 1A. New Delhi: Publication and Information Directorate, CSIR; 1976.  Back to cited text no. 3      
4.Kirtikar KR, Basu BD. Indian medicinal plants. 2 nd ed. Vol. 3. New Delhi: Bishen Singh Mahendra Pal Singh; 1933.  Back to cited text no. 4      
5.Nadkarni KM, Nadkarni AK, Chopra RN. Indian materia medica. Vol. 1. Bombay: Popular Prakashan; 1976.  Back to cited text no. 5      
6.Khare CP. Indian medicinal plants: An illustrated dictionary. Berlin, Heidelberg: Springer; 2007.  Back to cited text no. 6      
7.Ghosh AK, Srikanth K, Jha T. Inhibitory effect of Abies webbiana on tumour cells in mice. Indian J Nat Prod 2001;7:17-9.  Back to cited text no. 7      
8.Singh RK, Bhattacharya SK, Acharya SB. Pharmacological activity of Abies pindrow. J Ethnopharmacol 2000;73:47-51.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Kumar V, Singh RK, Jaiswal AK, Bhattacharya SK, Acharya SB. Anxiolytic activity of Abies pindrow Royal leaves: An experimental study. Indian J Exp Biol 2000;38:343-6.  Back to cited text no. 9  [PUBMED]    
10.Nayak SS, Ghosh AK, Srikanth K, Debnath B, Jha T. Antitussive activity of Abies webbiana Lindl. leaf extract against sulphur dioxide-induced cough reflex in mice. Phytother Res 2003;17:930-2.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]  
11.Nayak SS, Ghosh AK, Debnath B, Vishnoi SP, Jha T. Synergistic effect of methanol extract of Abies webbiana leaves on sleeping time induced by standard sedatives in mice and anti-inflammatory activity of extracts in rats. J Ethnopharmacol 2004;93:397-402.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]  
12.Vishnoi SP, Ghosh AK, Debnath B, Samanta S, Gayen S, Jha T. Antibacterial activity of Abies webbiana. Fitoterapia 2007;78:153-5.  Back to cited text no. 12  [PUBMED]  [FULLTEXT]  
13.Chatterjee A, Kotoky J, Das KK, Bannerjee J, Chakraborty T. Abiesin, A biflavonoid of Abies webbiana. Phytochemistry 1984;23:704-5.  Back to cited text no. 13      
14.Singh RK, Pandey BL, Tripathi M, Pandey VB. Anti-inflammatory effect of (+) pinitol. Fitoterapia 2000;72:168-70.  Back to cited text no. 14      
15.Chatterjee A, Pakrashi SC. The treatise on Indian medicinal plants. Vol. 1. New Delhi: Publication and Information Directorate, CSIR; 1991.  Back to cited text no. 15      
16.Tiwari KP, Minocha PK. A Chalcone glycoside from Abies pindrow. Phytochemistry 1980;19:2501-3.  Back to cited text no. 16      
17.Ghosh AK, Bhattacharya S. Pharmacognostic studies on leaves of Abies webbiana grown in Sikkim Himalayan region of India. Phcog J 2009;1:171-8.  Back to cited text no. 17      
18.Rudesill JT, Severson RF, Pomonis JG. The syntheses of N-arylaziridines. J Org Chem 1971;36:3071-6.  Back to cited text no. 18  [PUBMED]    
19.Zwanenburg B, Thijs L. Aziridine and azirine carboxylic esters. Pure Appl Chem 1996;68:735-8.   Back to cited text no. 19      
20.Aires-de-Sousa J, Prabhakar S, Lobo AM, Rosa AM, Gomes MJS, Corvo MC, et al. Asymmetric synthesis of N-aryl aziridines. Tetrahedron Asymmetry 2002;12:3349-65.  Back to cited text no. 20      
21.Taylor AM, Schreiber SL. Aziridines as intermediates in diversity-oriented syntheses of alkaloids. Tetrahedron Lett 2009;50:3230-3.  Back to cited text no. 21  [PUBMED]  [FULLTEXT]  
22.Pratt WB, Ruddon RW, Ensminger WD, Maybaum J. The anticancer drugs. Oxford University Press Inc.; New York: 1994.  Back to cited text no. 22      
23.Ismail FM, Levitsky DO, Dembitsky VM. Aziridine alkaloids as potential therapeutic agents. Eur J Med Chem 2009;44:3373-87.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1]


This article has been cited by
1 Molecular docking and QSAR studies on plant derived bioactive compounds as potent inhibitors of DEK oncoprotein
Sindhu, T. and Rajamanikandan, S. and Durgapriya, D. and Anitha, J.R. and Akila, S. and Gopalakrishnan, V.K.
Asian Journal of Pharmaceutical and Clinical Research. 2011; 4(2): 67-71
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    Acknowledgments
    References
    Article Figures

 Article Access Statistics
    Viewed3140    
    Printed182    
    Emailed3    
    PDF Downloaded86    
    Comments [Add]    
    Cited by others 1    

Recommend this journal