Home | About PR | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
RESEARCH ARTICLE
Year : 2009  |  Volume : 1  |  Issue : 5  |  Page : 238-244

Determination of Radical Scavenging Activity of Hydroalcoholic and Aqueous Extracts from Bauhinia divaricata and Bougainvillea spectabilis Using the DPPH Assay


1 Food Research Center. Instituto Tecnológico Superior de Alamo Temapache (FRC-ITSAT). Km. 6.5 Tuxpan-Potrero del Llano. Alamo, Veracruz 92750
2 Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional. (CEPROBI-IPN). Yautepec, Morelos. México

Correspondence Address:
L Chaires-Martinez
Food Research Center. Instituto Tecnológico Superior de Alamo Temapache (FRC-ITSAT). Km. 6.5 Tuxpan-Potrero del Llano. Alamo, Veracruz 92750

Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions

Bauhinia divaricata and Bougainvillea spectabilis are medicinal plants widely distributed in Mexico and they are used because of its potential hypoglycemic action; however, no free radical scavenging activity (RSA) studies over these plants are known. Thus, aqueous and hydroalcoholic extracts from leaf and stem samples were evaluated for their RSA using 1,1-diphenylpicrylhydrazyl free radical (DPPH). Total phenolics and flavonoids extracts were determined too. Statistical analyses were performed using the SPSS statistical program with the significance level set at P<0.05. Bauhinia divaricata stem aqueous extracts with total phenols content of 12.98 mg GAE/g DW had the highest amount between samples. The same behavior was shown in flavonoids determination. However, when RSA was estimated it was found that stem aqueous extracts from Bougainvillea spectabilis produced more DPPH absorbance reduction (95.66%), with an IC 50 (the concentration to inhibit the oxidation of DPPH by 50%) and AP (reciprocal of IC 50) values of 0.03 μg/mL and 33.33, respectively. These results were superior to common synthetic antioxidants used in the food industry like butylated hydroxyl toluene (BHT, IC 50=62 μg/mL) and can be useful for further applications of these plants or its constituents in pharmaceutical and alimentary preparations.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed5730    
    Printed130    
    Emailed8    
    PDF Downloaded123    
    Comments [Add]    

Recommend this journal